% RUNS ON mzn20_fd % RUNS ON mzn-fzn_fd % RUNS ON mzn20_fd_linear % RUNS ON mzn20_mip %-----------------------------------------------------------------------------% % Steiner Triples (CSPlib problem 44) % % March 2008; Mark Wallace, based on the Eclipse version by Joachim Schimpf % % The following program computes so-called Steiner triplets. These are % triplets of numbers from 1 to n such that any two triplets have at most one % element in common. % % One possible solution for n=7 is % { {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, % {2, 5, 7}, {3, 4, 7}, {3, 5, 6} }. %-----------------------------------------------------------------------------% n = 7; %-----------------------------------------------------------------------------% int: n; int: nb = n * (n-1) div 6 ; array[1..nb] of var set of 1..n: sets; constraint forall(i in 1..nb) ( card(sets[i]) = 3 ); constraint forall(i in 1..nb, j in i+1..nb) ( card(sets[i] intersect sets[j]) <= 1 ); % Symmetry breaking: constraint forall(i in 1..nb-1) ( sets[i] >= sets[i+1] ); solve :: set_search(sets, input_order, indomain_min, complete) satisfy; output [ " " ++ show(sets[i]) | i in 1..nb ] ++ ["\n"]; %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------%