.. _sec-optiontypes: Option Types ============ .. index:: single: option types Option types are a powerful abstraction that allows for concise modelling. An option type decision variable represents a decision that has another possibility :math:`\top`, represented in MiniZinc as :mzn:`<>` indicating the variable is *absent*. Option type decisions are useful for modelling problems where a decision is not meaningful unless other decisions are made first. Declaring and Using Option Types -------------------------------- .. defblock:: Option type Variables .. index:: single: variable; option type An option type variable is declared as: .. code-block:: minizincdef var opt : : where :mzndef:`` is one of :mzn:`int`, :mzn:`float` or :mzn:`bool` or a fixed range expression. Option type variables can be parameters but this is rarely useful. An option type variable can take the additional value :mzn:`<>` indicating *absent*. Three builtin functions are provided for option type variables: :mzn:`absent(v)` returns :mzn:`true` iff option type variable :mzn:`v` takes the value :mzn:`<>`, :mzn:`occurs(v)` returns :mzn:`true` iff option type variable :mzn:`v` does *not* take the value :mzn:`<>`, and :mzn:`deopt(v)` returns the normal value of :mzn:`v` or fails if it takes the value :mzn:`<>`. The most common use of option types is for optional tasks in scheduling. In the flexible job shop scheduling problem we have :mzn:`n` tasks to perform on :mzn:`k` machines, and the time to complete each task on each machine may be different. The aim is to minimize the completion time of all tasks. A model using option types to encode the problem is given in :numref:`ex-flexible-js`. We model the problem using :math:`n \times k` optional tasks representing the possibility of each task run on each machine. We require that start time of the task and its duration spans the optional tasks that make it up, and require only one actually runs using the :mzn:`alternative` global constraint. We require that at most one task runs on any machine using the :mzn:`disjunctive` global constraint extended to optional tasks. Finally we constrain that at most :mzn:`k` tasks run at any time, a redundant constraint that holds on the actual (not optional) tasks. .. literalinclude:: examples/flexible-js.mzn :language: minizinc :name: ex-flexible-js :caption: Model for flexible job shop scheduling using option types (:download:`flexible-js.mzn `). .. \pjs{Finish the damn section!} Hidden Option Types ------------------- Option type variable arise implicitly when list comprehensions are constructed with iteration over variable sets, or where the expressions in :mzn:`where` clauses are not fixed. For example the model fragment .. code-block:: minizinc var set of 1..n: x; constraint sum(i in x)(i) <= limit; is syntactic sugar for .. code-block:: minizinc var set of 1..n: x; constraint sum(i in 1..n)(if i in x then i else <> endif) <= limit; The :mzn:`sum` builtin function actually operates on a list of type-inst :mzn:`var opt int`. Since the :mzn:`<>` acts as the identity 0 for + this gives the expected results. Similarly the model fragment .. code-block:: minizinc array[1..n] of var int: x; constraint forall(i in 1..n where x[i] >= 0)(x[i] <= limit); is syntactic sugar for .. code-block:: minizinc array[1..n] of var int: x; constraint forall(i in 1..n)(if x[i] >= 0 then x[i] <= limit else <> endif); Again the :mzn:`forall` function actually operates on a list of type-inst :mzn:`var opt bool`. Since :mzn:`<>` acts as identity :mzn:`true` for :mzn:`/\ ` this gives the expected results. The hidden uses can lead to unexpected behaviour though so care is warranted. Consider .. code-block:: minizinc var set of 1..9: x; constraint card(x) <= 4; constraint length([ i | i in x]) > 5; solve satisfy; which would appear to be unsatisfiable. It returns :mzn:`x = {1,2,3,4}` as example answer. This is correct since the second constraint is equivalent to .. code-block:: minizinc constraint length([ if i in x then i else <> endif | i in 1..9 ]) > 5; and the length of the list of optional integers is always 9 so the constraint always holds! One can avoid hidden option types by not constructing iteration over variables sets or using unfixed :mzn:`where` clauses. For example the above two examples could be rewritten without option types as .. code-block:: minizinc var set of 1..n: x; constraint sum(i in 1..n)(bool2int(i in x)*i) <= limit; and .. code-block:: minizinc array[1..n] of var int: x; constraint forall(i in 1..n)(x[i] >= 0 -> x[i] <= limit);