predicate fzn_mdd_reif(array[int] of var int: x, % variables constrained by MDD int: N, % number of nodes root is node 1 array[int] of int: level, % level of each node root is level 1, T is level length(x)+1 int: E, % number of edges array[int] of int: from, % edge leaving node 1..N array[int] of set of int: label, % value of variable array[int] of int: to, % edge entering node 0..N where 0 = T node var bool: b % reification value ) = let { set of int: NODE = 1..N; set of int: EDGE = 1..E; int: L = length(x); array[0..N] of var bool: bn; array[EDGE] of var bool: be; set of int: D = dom_array(x); } in (b <-> bn[0]) /\ % true node is result bn[1] /\ % root is always true % T1 each node except the true enforces an outgoing edge forall(n in NODE)(bn[n] -> (exists(e in EDGE where from[e] = n)(be[e]) \/ b = 0)) /\ % T23 each edge enforces its endpoints forall(e in EDGE)((be[e] -> bn[from[e]]) /\ (be[e] -> bn[to[e]])) /\ % T4 each edge enforces its label forall(e in EDGE)(be[e] -> x[level[from[e]]] in label[e]) /\ % P1 each node enforces its outgoing edges forall(e in EDGE)(bn[from[e]] /\ x[level[from[e]]] in label[e] -> be[e]) /\ % P2 each node except the root enforces an incoming edge (bn[0] -> exists(e in EDGE where to[e] = 0)(be[e])) /\ forall(n in 2..N)(bn[n] -> exists(e in EDGE where to[e] = n)(be[e])) /\ % P3 each label has a support, either an edge or to give false forall(i in 1..L, d in D) (x[i] = d -> forall(n in NODE where level[n] = i, e in EDGE where from[e] = n /\ d in label[e]) (bn[n] -> be[e]) /\ forall(n in NODE where level[n] = i /\ not exists(e in EDGE where from[e] = n) (d in label[e])) (bn[n] -> b = 0)) /\ % P4 at most one node at every level is true (redundant) forall(i in 1..L) (sum(n in NODE where level[n] = i)(bn[n]) <= 1);