git-subtree-dir: software/mza git-subtree-split: f970a59b177c13ca3dd8aaef8cc6681d83b7e813
50 lines
2.2 KiB
MiniZinc
50 lines
2.2 KiB
MiniZinc
%-----------------------------------------------------------------------------%
|
|
% Requires that the array 'x' is lexicographically less than or equal to
|
|
% array 'y'. Compares them from first to last element, regardless of indices
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
predicate fzn_lex_lesseq_bool(array[int] of var bool: x,
|
|
array[int] of var bool: y) =
|
|
% if (min(card(index_set(x)), card(index_set(y))) <= 25) then
|
|
% let { int: size = min(card(index_set(x)), card(index_set(y)));
|
|
% } in
|
|
% sum(i in 0..size-1)(pow(2, (size-1-i)) * bool2int(x[i+min(index_set(x))]))
|
|
% <= sum(i in 0..size-1)(pow(2, (size-1-i)) * bool2int(y[i+min(index_set(y))]))
|
|
% else
|
|
% my_trace ("lex_lesseq_bool(\(x), \(y))") /\
|
|
let { int: lx = min(index_set(x)),
|
|
int: ux = max(index_set(x)),
|
|
int: ly = min(index_set(y)),
|
|
int: uy = max(index_set(y)),
|
|
int: size = min(ux - lx, uy - ly),
|
|
array[0..size+1] of var bool: b }
|
|
% b[i] is true if the lexicographical order holds from position i on.
|
|
in
|
|
b[0]
|
|
/\
|
|
forall(i in 0..size) (
|
|
b[i] -> ( ( ( x[lx + i] <= y[ly + i] ) ) /\
|
|
% bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) <= 2 /\
|
|
|
|
% ( b[i] ->
|
|
( x[lx + i] < y[ly + i] \/ b[i+1] ) )
|
|
% /\ ( bool2int(b[i]) <= bool2int(x[lx + i] < y[ly + i]) + bool2int(b[i+1]) ) /\
|
|
% bool2int(b[i]) + (1-bool2int(x[lx + i])) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3
|
|
% /\ bool2int(b[i]) + bool2int(x[lx + i]) + bool2int(y[ly + i]) + (1-bool2int(b[i+1])) <= 3
|
|
%% This guy is dominated by the 1st one above but helps:
|
|
% /\ bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3
|
|
)
|
|
/\ b[size+1] = (ux-lx <= uy-ly)
|
|
% endif
|
|
;
|
|
|
|
% forall(i in 0..size) (
|
|
% ( b[i] == ( x[lx + i] <= y[ly + i] ) )
|
|
% /\
|
|
% if i < size then
|
|
% ( b[i] == ( x[lx + i] < y[ly + i] \/ b[i+1]
|
|
% ) ) else true endif
|
|
% );
|
|
|
|
%-----------------------------------------------------------------------------%
|