1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
Jip J. Dekker f2a1c4e389 Squashed 'software/mza/' content from commit f970a59b17
git-subtree-dir: software/mza
git-subtree-split: f970a59b177c13ca3dd8aaef8cc6681d83b7e813
2021-07-11 16:34:30 +10:00

100 lines
4.5 KiB
MiniZinc

/** @group globals.extensional
The sequence of values in array \a x (which must all be in the range 1..\a S)
is accepted by the DFA of \a Q states with input 1..\a S and transition
function \a d (which maps (1..\a Q, 1..\a S) -> 0..\a Q)) and initial state \a q0
(which must be in 1..\a Q) and accepting states \a F (which all must be in
1..\a Q). We reserve state 0 to be an always failing state.
*/
predicate fzn_regular(array[int] of var int: x, int: Q, int: S,
array[int,int] of int: d, int: q0, set of int: F) =
% my_trace(" regular: index_set(x)=" ++ show(index_set(x))
% ++ ", dom_array(x)=" ++ show(dom_array(x))
% ++ ", dom_array(a)=" ++ show(1..Q)
% ++ "\n") /\
let {
% If x has index set m..n-1, then a[m] holds the initial state
% (q0), and a[i+1] holds the state we're in after processing
% x[i]. If a[n] is in F, then we succeed (ie. accept the string).
int: m = min(index_set(x)),
int: n = max(index_set(x)) + 1,
array[m..n] of var 1..Q: a,
constraint a[m] = q0 /\ % Set a[0].
a[n] in F, % Check the final state is in F.
constraint
forall(i in index_set(x)) (
x[i] in 1..S % Do this in case it's a var.
/\ %% trying to eliminate non-reachable states:
let {
set of int: va_R = { d[va, vx] | va in dom(a[i]), vx in dom(x[i]) } diff { 0 } %% Bug in MZN 2.0.4
} in
a[i+1] in va_R
)
} in
let {
constraint
forall(i in [n-i | i in 1..length(x)]) (
a[i] in { va | va in dom(a[i])
where exists(vx in dom(x[i]))(d[va, vx] in dom(a[i+1])) }
/\
x[i] in { vx | vx in dom(x[i])
where exists(va in dom(a[i]))(d[va, vx] in dom(a[i+1])) }
)
} in
forall(i in index_set(x)) (
let {
set of int: va_R = { d[va, vx] | va in dom(a[i]), vx in dom(x[i]) } diff { 0 } %% Bug in MZN 2.0.4
} in
% my_trace(" S" ++ show(i)
% ++ ": dom(a[i])=" ++ show(dom(a[i]))
% ++ ", va_R="++show(va_R)
% ++ ", index_set_2of2(eq_a) diff va_R=" ++ show(index_set_2of2(eq_a) diff va_R)
% ++ ", dom(a[i+1])=" ++ show(dom(a[i+1]))
% ) /\
a[i+1] in va_R
%/\ a[i+1] in min(va_R)..max(va_R)
)
% /\ my_trace(" regular -- domains after prop: index_set(x)=" ++ show(index_set(x))
% ++ ", dom_array(x)=" ++ show(dom_array(x))
% ++ ", dom_array(a)=" ++ show(dom_array(a))
% ++ "\n")
% /\ my_trace("\n")
/\
let {
array[int, int] of var int: eq_a=eq_encode(a),
array[int, int] of var int: eq_x=eq_encode(x),
} in
forall(i in index_set(x)) (
% a[i+1] = d[a[i], x[i]] % Determine a[i+1].
if card(dom(a[i]))*card(dom(x[i])) > nMZN__UnarySizeMax_1step_regular then
%% Implication decomposition:
forall(va in dom(a[i]), vx in dom(x[i]))(
if d[va, vx] in dom(a[i+1]) then
eq_a[i+1, d[va, vx]] >= eq_a[i, va] + eq_x[i, vx] - 1 %% The only-if part of conj
else
1 >= eq_a[i, va] + eq_x[i, vx]
endif
)
else
%% Network-flow decomposition:
%% {regularIP07} M.-C. C{\^o}t{\'e}, B.~Gendron, and L.-M. Rousseau.
%% \newblock Modeling the regular constraint with integer programming.
let {
% array[int, int] of set of int: VX_a12 = %% set of x for given a1 that produce a2
% array2d(1..S, 1..Q, [ { vx | vx in 1..S where d[va1, vx]==va2 } | va1 in dom(a[i]), va2 in dom(a[i+1]) ]);
array[int, int] of var int: ppAX = eq_encode(a[i], x[i]);
} in
forall (va2 in dom(a[i+1])) (
eq_a[i+1, va2] = sum(va1 in dom(a[i]), vx in dom(x[i]) where d[va1, vx]==va2)
(ppAX[va1, vx])
)
/\
forall(va1 in dom(a[i]), vx in dom(x[i]))(
if not (d[va1, vx] in dom(a[i+1])) then
ppAX[va1, vx] == 0
else
true
endif
)
endif
);