1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
Jip J. Dekker f2a1c4e389 Squashed 'software/mza/' content from commit f970a59b17
git-subtree-dir: software/mza
git-subtree-split: f970a59b177c13ca3dd8aaef8cc6681d83b7e813
2021-07-11 16:34:30 +10:00

69 lines
2.1 KiB
MiniZinc

include "alldifferent.mzn";
/** @group globals
Constrains the elements of \a x to define a subcircuit where \a x[\p i] = \p j
means that \p j is the successor of \p i and \a x[\p i] = \p i means that \p i
is not in the circuit.
*/
%% Linear version
predicate fzn_subcircuit(array[int] of var int: x) =
let { set of int: S = index_set(x),
int: l = min(S),
int: u = max(S),
int: n = card(S),
array[S] of var 1..n: order,
array[S] of var bool: ins = array1d(S,[ x[i] != i | i in S]),
var l..u+1: firstin = min([ u+1 + bool2int(ins[i])*(i-u-1) | i in S]), %% ...
var S: lastin,
var bool: empty = (firstin == u+1),
} in
alldifferent(x) /\
% NO alldifferent(order) /\
% If the subcircuit is empty then each node points at itself.
%
(empty <-> forall(i in S)(not ins[i])) /\
% If the subcircuit is non-empty then order numbers the subcircuit.
%
((not empty) <->
%% Another way to express minimum.
% forall(i in l..u+1)(
% i==firstin <-> ins[i]
% /\ forall(j in S where j<i)( not ins[j] )
% ) /\
% The firstin node is numbered 1.
order[firstin] = 1 /\
% The lastin node is greater than firstin.
lastin > firstin /\
% The lastin node points at firstin.
x[lastin] = firstin /\
% And both are in
ins[lastin] /\ ins[firstin] /\
% The successor of each node except where it is firstin is
% numbered one more than the predecessor.
% forall(i in S) (
% (ins[i] /\ x[i] != firstin) -> order[x[i]] = order[i] + 1
% ) /\
%%% MTZ model. Note that INTEGER order vars seem better!:
forall (i,j in S where i!=j) (
order[i] - order[j] + n*bool2int( x[i]==j /\ i!=lastin )
% + (n-2)*bool2int(x[j]==i) %% the Desrochers & Laporte '91 term
<= n-1 ) /\
% Each node that is not in is numbered after the lastin node.
forall(i in S) (
true
% (not ins[i]) <-> (n == order[i])
)
);
%-----------------------------------------------------------------------------%