git-subtree-dir: software/mza git-subtree-split: f970a59b177c13ca3dd8aaef8cc6681d83b7e813
48 lines
2.8 KiB
MiniZinc
48 lines
2.8 KiB
MiniZinc
predicate fzn_cost_mdd(array[int] of var int: x, % variables constrained by MDD
|
|
int: N, % number of nodes root is node 1
|
|
array[int] of int: level, % level of each node root is level 1, T is level length(x)+1
|
|
int: E, % number of edges
|
|
array[int] of int: from, % edge leaving node 1..N
|
|
array[int] of set of int: label, % values of variable on edge
|
|
array[int] of int: cost, % cost of using edge
|
|
array[int] of int: to, % edge entering node 0..N where 0 = T node
|
|
var int: totalcost % total cost of path
|
|
) =
|
|
let { set of int: NODE = 1..N;
|
|
set of int: EDGE = 1..E;
|
|
int: L = length(x);
|
|
array[1..L] of int: maxlevelcost =
|
|
[ max(e in EDGE where level[from[e]] = l)(cost[e]) | l in 1..L];
|
|
array[1..L] of int: minlevelcost =
|
|
[ min([0] ++ [ cost[e] | e in EDGE where level[from[e]] = l /\ cost[e] < 0])| l in 1..L] ;
|
|
int: maxcost = sum(maxlevelcost);
|
|
set of int: COST = sum(minlevelcost)..L*(maxcost+1);
|
|
array[0..N] of var bool: bn;
|
|
array[EDGE] of var bool: be;
|
|
array[0..N] of var COST: ln; % distance from T
|
|
array[0..N] of var COST: un; % distance from root
|
|
} in
|
|
bn[0] /\ % true node is true
|
|
bn[1] /\ % root must hold
|
|
% T1 each node except the root enforces an outgoing edge
|
|
forall(n in NODE)(bn[n] -> exists(e in EDGE where from[e] = n)(be[e])) /\
|
|
% T23 each edge enforces its endpoints
|
|
forall(e in EDGE)((be[e] -> bn[to[e]]) /\ (be[e] -> bn[to[e]])) /\
|
|
% T4 each edge enforces its label
|
|
forall(e in EDGE)(be[e] -> x[level[from[e]]] in label[e]) /\
|
|
% P1 each node enforces its outgoing edges
|
|
forall(e in EDGE)(bn[from[e]] /\ x[level[from[e]]] in label[e] -> be[e]) /\
|
|
% P2 each node except the root enforces an incoming edge
|
|
exists(e in EDGE where to[e] = 0)(be[e]) /\
|
|
forall(n in 2..N)(bn[n] -> exists(e in EDGE where to[e] = n)(be[e])) /\
|
|
% P3 each label has a support
|
|
forall(i in 1..L, d in dom(x[i]))
|
|
(x[i] = d -> exists(e in EDGE where level[from[e]] = i /\ d in label[e])(be[e])) /\
|
|
ln[0] = 0 /\ un[1] = 0 /\
|
|
forall(n in NODE)
|
|
(ln[n] = min(e in EDGE where from[e] = n)(ln[to[e]] + cost[e] + (not be[e])*(maxcost+1 - cost[e]))) /\
|
|
forall(n in 2..N)
|
|
(un[n] = min(e in EDGE where to[e] = n)(un[from[e]] + cost[e] + (not be[e])*(maxcost+1 - cost[e]))) /\
|
|
forall(e in EDGE)(be[e] -> un[from[e]] + cost[e] + ln[to[e]] <= maxcost) /\
|
|
totalcost = ln[1];
|