git-subtree-dir: software/gecode git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
243 lines
7.7 KiB
C++
Executable File
243 lines
7.7 KiB
C++
Executable File
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Guido Tack <tack@gecode.org>
|
|
*
|
|
* Contributing authors:
|
|
* Mikael Lagerkvist <lagerkvist@gecode.org>
|
|
*
|
|
* Copyright:
|
|
* Guido Tack, 2004
|
|
* Mikael Lagerkivst, 2017
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <gecode/driver.hh>
|
|
#include <gecode/int.hh>
|
|
#include <gecode/set.hh>
|
|
|
|
using namespace Gecode;
|
|
|
|
/// \brief %Options for %Golf example
|
|
class GolfOptions : public Options {
|
|
protected:
|
|
Driver::IntOption _w; //< Number of weeks
|
|
Driver::IntOption _g; //< Number of groups
|
|
Driver::IntOption _s; //< Number of players per group
|
|
public:
|
|
/// Constructor
|
|
GolfOptions(void)
|
|
: Options("Golf"),
|
|
_w("w","number of weeks",9),
|
|
_g("g","number of groups",8),
|
|
_s("s","number of players per group",4) {
|
|
add(_w);
|
|
add(_g);
|
|
add(_s);
|
|
}
|
|
/// Return number of weeks
|
|
int w(void) const { return _w.value(); }
|
|
/// Return number of groups
|
|
int g(void) const { return _g.value(); }
|
|
/// Return number of players per group
|
|
int s(void) const { return _s.value(); }
|
|
};
|
|
|
|
/**
|
|
* \brief %Example: %Golf tournament
|
|
*
|
|
* Schedule a golf tournament. This is problem 010 from csplib.
|
|
*
|
|
* Note that "Modeling and Programming with Gecode" uses this example
|
|
* as a case study.
|
|
*
|
|
* \ingroup Example
|
|
*
|
|
*/
|
|
class Golf : public Script {
|
|
public:
|
|
/// Model variants
|
|
enum {
|
|
MODEL_PLAIN, ///< A simple model
|
|
MODEL_SYMMETRY ///< Model with symmetry breaking
|
|
};
|
|
/// Propagation
|
|
enum {
|
|
PROP_SET, ///< Propagation of pair play amount using set variables
|
|
PROP_INT, ///< Propagation of pair play amount using int variables and distinct
|
|
PROP_MIXED, ///< Propagation of pair play amount using both set and int variables
|
|
};
|
|
int g; ///< Number of groups in a week
|
|
int s; ///< Number of players in a group
|
|
int w; ///< Number of weeks
|
|
|
|
/// The sets representing the groups
|
|
SetVarArray groups;
|
|
|
|
/// Actual model
|
|
Golf(const GolfOptions& opt)
|
|
: Script(opt),
|
|
g(opt.g()), s(opt.s()), w(opt.w()),
|
|
groups(*this,g*w,IntSet::empty,0,g*s-1,
|
|
static_cast<unsigned int>(s),static_cast<unsigned int>(s)) {
|
|
Matrix<SetVarArray> schedule(groups,g,w);
|
|
|
|
// Groups in one week must be disjoint
|
|
SetVar allPlayers(*this, 0,g*s-1, 0,g*s-1);
|
|
for (int i=0; i<w; i++)
|
|
rel(*this, setdunion(schedule.row(i)) == allPlayers);
|
|
|
|
// No two golfers play in the same group more than once
|
|
if (opt.propagation() == PROP_SET || opt.propagation() == PROP_MIXED) {
|
|
// Cardinality of intersection between two groups is at most one
|
|
for (int i=0; i<groups.size()-1; i++)
|
|
for (int j=i+1; j<groups.size(); j++)
|
|
rel(*this, cardinality(groups[i] & groups[j]) <= 1);
|
|
}
|
|
if (opt.propagation() == PROP_INT || opt.propagation() == PROP_MIXED) {
|
|
// Set up table mapping from pairs (p1,p2) (where p1<p2) of players to
|
|
// unique integer identifiers
|
|
int playerCount = g * s;
|
|
TupleSet ts(3);
|
|
int pairCount=0;
|
|
for (int p1=0; p1<playerCount-1; p1++)
|
|
for (int p2=p1+1; p2<playerCount; p2++)
|
|
ts.add({p1, p2, pairCount++});
|
|
ts.finalize();
|
|
|
|
// Collect pairs of golfers into pairs
|
|
IntVarArgs pairs;
|
|
for (int i=0; i<groups.size()-1; i++) {
|
|
// Channel sorted will ensure that for i<j, group[i]<group[j],
|
|
// ensuring that the tuple set has a valid mapping.
|
|
IntVarArgs group(*this, s, 0, playerCount-1);
|
|
channelSorted(*this, group, groups[i]);
|
|
// Collect all pairs in current group
|
|
for (int p1=0; p1<group.size()-1; ++p1) {
|
|
for (int p2=p1+1; p2<group.size(); ++p2) {
|
|
IntVar pair(*this, 0, pairCount);
|
|
|
|
IntVarArgs args;
|
|
args << group[p1] << group[p2] << pair;
|
|
extensional(*this, args, ts);
|
|
|
|
pairs << pair;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All pairs of golfers (using the unique identifiers) must be different
|
|
distinct(*this, pairs, opt.ipl());
|
|
}
|
|
|
|
if (opt.model() == MODEL_SYMMETRY) {
|
|
|
|
/*
|
|
* Redundant constraints and static symmetry breaking from
|
|
* "Solving Kirkman's Schoolgirl Problem in a Few Seconds"
|
|
* Nicolas Barnier, Pascal Brisset, Constraints, 10, 7-21, 2005
|
|
*
|
|
*/
|
|
|
|
// Redundant constraint:
|
|
// in each week, one player plays in only one group
|
|
for (int j=0; j<w; j++) {
|
|
for (int p=0; p < g*s; p++) {
|
|
BoolVarArgs b(g);
|
|
for (int i=0; i<g; i++)
|
|
b[i] = expr(*this, (singleton(p) <= schedule(i,j)));
|
|
linear(*this, b, IRT_EQ, 1);
|
|
}
|
|
}
|
|
|
|
// Symmetry breaking: order groups
|
|
for (int j=0; j<w; j++) {
|
|
IntVarArgs m(g);
|
|
for (int i=0; i<g; i++)
|
|
m[i] = expr(*this, min(schedule(i,j)));
|
|
rel(*this, m, IRT_LE);
|
|
}
|
|
|
|
// Symmetry breaking: order weeks
|
|
// minElem(group(w,0)\{0}) < minElem(group(w+1,0)\{0})
|
|
{
|
|
IntVarArgs m(w);
|
|
for (int i=0; i<w; i++)
|
|
m[i] = expr(*this, min(schedule(0,i)-IntSet(0,0)));
|
|
rel(*this, m, IRT_LE);
|
|
}
|
|
|
|
// Symmetry breaking: value symmetry of player numbers
|
|
precede(*this, groups, IntArgs::create(groups.size(),0));
|
|
}
|
|
|
|
branch(*this, groups, SET_VAR_MIN_MIN(), SET_VAL_MIN_INC());
|
|
}
|
|
|
|
/// Print solution
|
|
virtual void
|
|
print(std::ostream& os) const {
|
|
os << "Tournament plan" << std::endl;
|
|
Matrix<SetVarArray> schedule(groups,g,w);
|
|
for (int j=0; j<w; j++) {
|
|
os << "Week " << j << ": " << std::endl << " ";
|
|
os << schedule.row(j) << std::endl;
|
|
}
|
|
}
|
|
|
|
/// Constructor for copying \a s
|
|
Golf(Golf& s) : Script(s), g(s.g), s(s.s), w(s.w) {
|
|
groups.update(*this, s.groups);
|
|
}
|
|
/// Copy during cloning
|
|
virtual Space*
|
|
copy(void) {
|
|
return new Golf(*this);
|
|
}
|
|
};
|
|
|
|
/** \brief Main-function
|
|
* \relates Golf
|
|
*/
|
|
int
|
|
main(int argc, char* argv[]) {
|
|
GolfOptions opt;
|
|
opt.model(Golf::MODEL_PLAIN);
|
|
opt.model(Golf::MODEL_PLAIN, "none", "no symmetry breaking");
|
|
opt.model(Golf::MODEL_SYMMETRY, "symmetry", "static symmetry breaking");
|
|
opt.propagation(Golf::PROP_SET);
|
|
opt.propagation(Golf::PROP_SET, "set", "Use set intersection cardinality for pair play constraints");
|
|
opt.propagation(Golf::PROP_INT, "int", "Use integer distinct for pair play constraints");
|
|
opt.propagation(Golf::PROP_MIXED, "mixed", "Use set interesection cardinality and integer distinct for pair play constraints");
|
|
opt.ipl(IPL_DOM);
|
|
opt.solutions(1);
|
|
opt.parse(argc,argv);
|
|
Script::run<Golf,DFS,GolfOptions>(opt);
|
|
return 0;
|
|
}
|
|
|
|
// STATISTICS: example-any
|