1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
on-restart-benchmarks/examples/queen-armies.cpp
Jip J. Dekker 1d9faf38de Squashed 'software/gecode/' content from commit 313e8764
git-subtree-dir: software/gecode
git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
2021-06-16 14:02:33 +10:00

322 lines
9.4 KiB
C++

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Mikael Lagerkvist <lagerkvist@gecode.org>
*
* Copyright:
* Mikael Lagerkvist, 2006
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <gecode/minimodel.hh>
#include <gecode/set.hh>
using namespace Gecode;
/** \name Constant sets for attacking queens.
*
* \relates QueenArmies
*/
IntSet* A;
/**
* \brief %Example: Peaceable co-existing armies of queens
*
* The goal of this problem is to place as many white and black queens
* on a chess-board without any two queens of different color
* attacking each other. The number of black queens should
* be greater than or equal to the number of white queens.
*
* This model is based on the one presented in "Models and Symmetry
* Breaking for 'Peaceable Armies of Queens'", by Barbara M. Smith, Karen
* E. Petrie, and Ian P. Gent.
*
* The smart version uses a custom brancher implementing a heuristic
* from the above paper, that helps speeding up the proof of
* optimality.
*
* \ingroup Example
*
*/
class QueenArmies : public IntMaximizeScript {
public:
const int n;
SetVar U, ///< Set of un-attacked squares
W; ///< Set of squares occupied by white queens
BoolVarArray w, ///< The placement of the white queens
b; ///< The placement of the black queens
IntVar q; ///< The number of white queens placed.
/// Branching to use for model
enum {
BRANCH_NAIVE, ///< Choose variables left to right
BRANCH_SPECIFIC ///< Choose variable with problem specific strategy
};
/// Constructor
QueenArmies(const SizeOptions& opt) :
IntMaximizeScript(opt),
n(opt.size()),
U(*this, IntSet::empty, IntSet(0, n*n)),
W(*this, IntSet::empty, IntSet(0, n*n)),
w(*this, n*n, 0, 1),
b(*this, n*n, 0, 1),
q(*this, 0, n*n)
{
// Basic rules of the model
for (int i = n*n; i--; ) {
// w[i] means that no blacks are allowed on A[i]
rel(*this, w[i] == (U || A[i]));
// Make sure blacks and whites are disjoint.
rel(*this, !w[i] || !b[i]);
// If i in U, then b[i] has a piece.
rel(*this, b[i] == (singleton(i) <= U));
}
// Connect optimization variable to number of pieces
linear(*this, w, IRT_EQ, q);
linear(*this, b, IRT_GQ, q);
// Connect cardinality of U to the number of black pieces.
IntVar unknowns = expr(*this, cardinality(U));
rel(*this, q <= unknowns);
linear(*this, b, IRT_EQ, unknowns);
if (opt.branching() == BRANCH_NAIVE) {
branch(*this, w, BOOL_VAR_NONE(), BOOL_VAL_MAX());
branch(*this, b, BOOL_VAR_NONE(), BOOL_VAL_MAX());
} else {
QueenBranch::post(*this);
assign(*this, b, BOOL_ASSIGN_MAX());
}
}
/// Constructor for cloning
QueenArmies(QueenArmies& s)
: IntMaximizeScript(s), n(s.n) {
U.update(*this, s.U);
W.update(*this, s.W);
w.update(*this, s.w);
b.update(*this, s.b);
q.update(*this, s.q);
}
/// Return copy during cloning
virtual Space*
copy(void) {
return new QueenArmies(*this);
}
/// Return solution cost
virtual IntVar cost(void) const {
return q;
}
/// Print solution
virtual void
print(std::ostream& os) const {
os << '\t';
for (int i = 0; i < n*n; ++i) {
if (w[i].assigned() && w[i].val()) os << "W";
else if (b[i].assigned() && b[i].val()) os << "B";
else if (!w[i].assigned() && !b[i].assigned()) os << " ";
else os << ".";
if ((i+1)%n == 0) os << std::endl << (i!=(n*n-1)?"\t":"");
}
os << "Number of white queens: " << q << std::endl << std::endl;
}
/** \brief Custom brancher for Peacable queens
*
* Custom brancher that tries to place white queens so that they
* maximise the amount of un-attacked squares that become attacked.
*
* \relates QueenArmies
*/
class QueenBranch : public Brancher {
private:
/// Cache of last computed decision
mutable int start;
/// Choice
class Choice : public Gecode::Choice {
public:
/// Position of variable
int pos;
/// Value of variable
bool val;
/** Initialize choice for brancher \a b, position \a pos0,
* and value \a val0.
*/
Choice(const Brancher& b, int pos0, bool val0)
: Gecode::Choice(b,2), pos(pos0), val(val0) {}
/// Archive into \a e
virtual void archive(Archive& e) const {
Gecode::Choice::archive(e);
e << pos << val;
}
};
/// Construct brancher
QueenBranch(Home home)
: Brancher(home), start(0) {}
/// Constructor for cloning
QueenBranch(Space& home, QueenBranch& b)
: Brancher(home, b), start(b.start) {}
public:
/// Check status of brancher, return true if alternatives left.
virtual bool status(const Space& home) const {
const QueenArmies& q = static_cast<const QueenArmies&>(home);
for (int i = start; i < q.n*q.n; ++i)
if (!q.w[i].assigned()) {
start = i;
return true;
}
// No non-assigned orders left
return false;
}
/// Return choice
virtual Gecode::Choice* choice(Space& home) {
const QueenArmies& q = static_cast<const QueenArmies&>(home);
int maxsize = -1;
int pos = -1;
for (int i = start; i < q.n*q.n; ++i) {
if (q.w[i].assigned()) continue;
IntSetRanges ai(A[i]);
SetVarUnknownRanges qU(q.U);
Iter::Ranges::Inter<IntSetRanges, SetVarUnknownRanges> r(ai, qU);
int size = Iter::Ranges::size(r);
if (size > maxsize) {
maxsize = size;
pos = i;
}
}
assert(pos != -1);
return new Choice(*this, pos, true);
}
/// Return choice
virtual Choice* choice(const Space&, Archive& e) {
int pos, val;
e >> pos >> val;
return new Choice(*this, pos, val);
}
/** \brief Perform commit for choice \a _c and
* alternative \a a.
*/
virtual ExecStatus commit(Space& home, const Gecode::Choice& _c,
unsigned int a) {
QueenArmies& q = static_cast<QueenArmies&>(home);
const Choice& c = static_cast<const Choice&>(_c);
bool val = (a == 0) ? c.val : !c.val;
return me_failed(Int::BoolView(q.w[c.pos]).eq(q, val))
? ES_FAILED
: ES_OK;
}
/// Print explanation
virtual void print(const Space&, const Gecode::Choice& _c,
unsigned int a,
std::ostream& o) const {
const Choice& c = static_cast<const Choice&>(_c);
bool val = (a == 0) ? c.val : !c.val;
o << "w[" << c.pos << "] = " << val;
}
/// Copy brancher during cloning
virtual Actor* copy(Space& home) {
return new (home) QueenBranch(home, *this);
}
/// Post brancher
static void post(QueenArmies& home) {
(void) new (home) QueenBranch(home);
}
/// Delete brancher and return its size
virtual size_t dispose(Space&) {
return sizeof(*this);
}
};
};
/** \brief Position of a piece in a square board.
*
* \relates QueenArmies
*/
int pos(int i, int j, int n) {
return i*n + j;
}
/** \brief Main-function
* \relates QueenArmies
*/
int
main(int argc, char* argv[]) {
SizeOptions opt("QueenArmies");
opt.size(6);
opt.branching(QueenArmies::BRANCH_SPECIFIC);
opt.branching(QueenArmies::BRANCH_NAIVE, "naive");
opt.branching(QueenArmies::BRANCH_SPECIFIC, "specific");
opt.solutions(0);
opt.parse(argc,argv);
// Set up the A-sets
// A[i] will contain the values attacked by a queen at position i
int n = opt.size();
A = new IntSet[n*n];
int *p = new int[std::max(n*n, 25)];
int pn = 0;
for (int i = n; i--; ) {
for (int j = n; j--; ) {
int dir[][2] = {
{ 0, 1},
{ 1, 1},
{ 1, 0},
{ 0, -1},
{-1, -1},
{-1, 0},
{ 1, -1},
{-1, 1}
};
p[pn++] = pos(i, j, n);
for (int k = 8; k--; ) {
for (int l = 0; l < n
&& 0 <= (i+l*dir[k][0]) && (i+l*dir[k][0]) < n
&& 0 <= (j+l*dir[k][1]) && (j+l*dir[k][1]) < n; ++l) {
p[pn++] = pos(i+l*dir[k][0], j+l*dir[k][1], n);
}
}
A[pos(i, j, n)] = IntSet(p, pn);
pn = 0;
}
}
delete [] p;
IntMaximizeScript::run<QueenArmies,BAB,SizeOptions>(opt);
return 0;
}
// STATISTICS: example-any