1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
Jip J. Dekker 1d9faf38de Squashed 'software/gecode/' content from commit 313e8764
git-subtree-dir: software/gecode
git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
2021-06-16 14:02:33 +10:00

350 lines
9.3 KiB
C++

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Christian Schulte <schulte@gecode.org>
* Vincent Barichard <Vincent.Barichard@univ-angers.fr>
*
* Copyright:
* Christian Schulte, 2003
* Vincent Barichard, 2012
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
namespace Gecode { namespace Float { namespace Linear {
/*
* Linear propagators
*
*/
template<class P, class N, PropCond pc>
forceinline
Lin<P,N,pc>::Lin(Home home, ViewArray<P>& x0, ViewArray<N>& y0, FloatVal c0)
: Propagator(home), x(x0), y(y0), c(c0) {
x.subscribe(home,*this,pc);
y.subscribe(home,*this,pc);
}
template<class P, class N, PropCond pc>
forceinline
Lin<P,N,pc>::Lin(Space& home, Lin<P,N,pc>& p)
: Propagator(home,p), c(p.c) {
x.update(home,p.x);
y.update(home,p.y);
}
template<class P, class N, PropCond pc>
PropCost
Lin<P,N,pc>::cost(const Space&, const ModEventDelta&) const {
return PropCost::linear(PropCost::LO, x.size()+y.size());
}
template<class P, class N, PropCond pc>
void
Lin<P,N,pc>::reschedule(Space& home) {
x.reschedule(home,*this,pc);
y.reschedule(home,*this,pc);
}
template<class P, class N, PropCond pc>
forceinline size_t
Lin<P,N,pc>::dispose(Space& home) {
x.cancel(home,*this,pc);
y.cancel(home,*this,pc);
(void) Propagator::dispose(home);
return sizeof(*this);
}
template<class View>
void
eliminate_p(ModEventDelta med, ViewArray<View>& x, FloatVal& c) {
int n = x.size();
if (FloatView::me(med) == ME_FLOAT_VAL) {
for (int i = n; i--; ) {
if (x[i].assigned()) {
c -= x[i].val(); x[i] = x[--n];
}
}
x.size(n);
}
}
template<class View>
void
eliminate_n(ModEventDelta med, ViewArray<View>& y, FloatVal& c) {
int n = y.size();
if (FloatView::me(med) == ME_FLOAT_VAL) {
for (int i = n; i--; ) {
if (y[i].assigned()) {
c += y[i].val(); y[i] = y[--n];
}
}
y.size(n);
}
}
forceinline bool
infty(const FloatNum& n) {
return ((n == std::numeric_limits<FloatNum>::infinity()) ||
(n == -std::numeric_limits<FloatNum>::infinity()));
}
/*
* Bound consistent linear equation
*
*/
template<class P, class N>
forceinline
Eq<P,N>::Eq(Home home, ViewArray<P>& x, ViewArray<N>& y, FloatVal c)
: Lin<P,N,PC_FLOAT_BND>(home,x,y,c) {}
template<class P, class N>
ExecStatus
Eq<P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, FloatVal c) {
(void) new (home) Eq<P,N>(home,x,y,c);
return ES_OK;
}
template<class P, class N>
forceinline
Eq<P,N>::Eq(Space& home, Eq<P,N>& p)
: Lin<P,N,PC_FLOAT_BND>(home,p) {}
template<class P, class N>
Actor*
Eq<P,N>::copy(Space& home) {
return new (home) Eq<P,N>(home,*this);
}
template<class P, class N>
ExecStatus
Eq<P,N>::propagate(Space& home, const ModEventDelta& med) {
// Eliminate singletons
Rounding r;
eliminate_p<P>(med, x, c);
eliminate_n<N>(med, y, c);
if ((FloatView::me(med) == ME_FLOAT_VAL) && ((x.size() + y.size()) <= 1)) {
if (x.size() == 1) {
GECODE_ME_CHECK(x[0].eq(home,c));
return home.ES_SUBSUMED(*this);
}
if (y.size() == 1) {
GECODE_ME_CHECK(y[0].eq(home,-c));
return home.ES_SUBSUMED(*this);
}
return (c.in(0.0)) ? home.ES_SUBSUMED(*this) : ES_FAILED;
}
ExecStatus es = ES_FIX;
bool assigned = true;
// Propagate max bound for positive variables
for (int i = x.size(); i--; ) {
// Compute bound
FloatNum sl = c.max();
for (int j = x.size(); j--; ) {
if (i == j) continue;
sl = r.sub_up(sl,x[j].min());
}
for (int j = y.size(); j--; )
sl = r.add_up(sl,y[j].max());
ModEvent me = x[i].lq(home,sl);
if (me_failed(me))
return ES_FAILED;
if (me != ME_FLOAT_VAL)
assigned = false;
if (me_modified(me))
es = ES_NOFIX;
}
// Propagate min bound for negative variables
for (int i = y.size(); i--; ) {
// Compute bound
FloatNum sl = -c.max();
for (int j = x.size(); j--; )
sl = r.add_down(sl,x[j].min());
for (int j = y.size(); j--; ) {
if (i == j) continue;
sl = r.sub_down(sl,y[j].max());
}
ModEvent me = y[i].gq(home,sl);
if (me_failed(me))
return ES_FAILED;
if (me != ME_FLOAT_VAL)
assigned = false;
if (me_modified(me))
es = ES_NOFIX;
}
// Propagate min bound for positive variables
for (int i = x.size(); i--; ) {
// Compute bound
FloatNum su = c.min();
for (int j = x.size(); j--; ) {
if (i == j) continue;
su = r.sub_down(su,x[j].max());
}
for (int j = y.size(); j--; )
su = r.add_down(su,y[j].min());
ModEvent me = x[i].gq(home,su);
if (me_failed(me))
return ES_FAILED;
if (me != ME_FLOAT_VAL)
assigned = false;
if (me_modified(me))
es = ES_NOFIX;
}
// Propagate max bound for negative variables
for (int i = y.size(); i--; ) {
// Compute bound
FloatNum su = -c.min();
for (int j = x.size(); j--; )
su = r.add_up(su,x[j].max());
for (int j = y.size(); j--; ) {
if (i == j) continue;
su = r.sub_up(su,y[j].min());
}
ModEvent me = y[i].lq(home,su);
if (me_failed(me))
return ES_FAILED;
if (me != ME_FLOAT_VAL)
assigned = false;
if (me_modified(me))
es = ES_NOFIX;
}
return assigned ? home.ES_SUBSUMED(*this) : es;
}
/*
* Bound consistent linear inequation
*
*/
template<class P, class N>
forceinline
Lq<P,N>::Lq(Home home, ViewArray<P>& x, ViewArray<N>& y, FloatVal c)
: Lin<P,N,PC_FLOAT_BND>(home,x,y,c) {}
template<class P, class N>
ExecStatus
Lq<P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, FloatVal c) {
(void) new (home) Lq<P,N>(home,x,y,c);
return ES_OK;
}
template<class P, class N>
forceinline
Lq<P,N>::Lq(Space& home, Lq<P,N>& p)
: Lin<P,N,PC_FLOAT_BND>(home,p) {}
template<class P, class N>
Actor*
Lq<P,N>::copy(Space& home) {
return new (home) Lq<P,N>(home,*this);
}
template<class P, class N>
ExecStatus
Lq<P,N>::propagate(Space& home, const ModEventDelta& med) {
// Eliminate singletons
FloatNum sl = 0.0;
Rounding r;
if (FloatView::me(med) == ME_FLOAT_VAL) {
for (int i = x.size(); i--; ) {
if (x[i].assigned()) {
c -= x[i].val(); x.move_lst(i);
} else {
sl = r.sub_up(sl,x[i].min());
}
}
for (int i = y.size(); i--; ) {
if (y[i].assigned()) {
c += y[i].val(); y.move_lst(i);
} else {
sl = r.add_up(sl,y[i].max());
}
}
if ((x.size() + y.size()) <= 1) {
if (x.size() == 1) {
GECODE_ME_CHECK(x[0].lq(home,c.max()));
return home.ES_SUBSUMED(*this);
}
if (y.size() == 1) {
GECODE_ME_CHECK(y[0].gq(home,(-c).min()));
return home.ES_SUBSUMED(*this);
}
return (c.max() >= 0) ? home.ES_SUBSUMED(*this) : ES_FAILED;
}
} else {
for (int i = x.size(); i--; )
sl = r.sub_up(sl,x[i].min());
for (int i = y.size(); i--; )
sl = r.add_up(sl,y[i].max());
}
sl = r.add_up(sl,c.max());
ExecStatus es = ES_FIX;
bool assigned = true;
for (int i = x.size(); i--; ) {
assert(!x[i].assigned());
FloatNum slx = r.add_up(sl,x[i].min());
ModEvent me = x[i].lq(home,slx);
if (me == ME_FLOAT_FAILED)
return ES_FAILED;
if (me != ME_FLOAT_VAL)
assigned = false;
if (me_modified(me))
es = ES_NOFIX;
}
for (int i = y.size(); i--; ) {
assert(!y[i].assigned());
FloatNum sly = r.sub_up(y[i].max(),sl);
ModEvent me = y[i].gq(home,sly);
if (me == ME_FLOAT_FAILED)
return ES_FAILED;
if (me != ME_FLOAT_VAL)
assigned = false;
if (me_modified(me))
es = ES_NOFIX;
}
return assigned ? home.ES_SUBSUMED(*this) : es;
}
}}}
// STATISTICS: float-prop