git-subtree-dir: software/gecode git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
350 lines
9.3 KiB
C++
350 lines
9.3 KiB
C++
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Christian Schulte <schulte@gecode.org>
|
|
* Vincent Barichard <Vincent.Barichard@univ-angers.fr>
|
|
*
|
|
* Copyright:
|
|
* Christian Schulte, 2003
|
|
* Vincent Barichard, 2012
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
namespace Gecode { namespace Float { namespace Linear {
|
|
|
|
/*
|
|
* Linear propagators
|
|
*
|
|
*/
|
|
template<class P, class N, PropCond pc>
|
|
forceinline
|
|
Lin<P,N,pc>::Lin(Home home, ViewArray<P>& x0, ViewArray<N>& y0, FloatVal c0)
|
|
: Propagator(home), x(x0), y(y0), c(c0) {
|
|
x.subscribe(home,*this,pc);
|
|
y.subscribe(home,*this,pc);
|
|
}
|
|
|
|
template<class P, class N, PropCond pc>
|
|
forceinline
|
|
Lin<P,N,pc>::Lin(Space& home, Lin<P,N,pc>& p)
|
|
: Propagator(home,p), c(p.c) {
|
|
x.update(home,p.x);
|
|
y.update(home,p.y);
|
|
}
|
|
|
|
template<class P, class N, PropCond pc>
|
|
PropCost
|
|
Lin<P,N,pc>::cost(const Space&, const ModEventDelta&) const {
|
|
return PropCost::linear(PropCost::LO, x.size()+y.size());
|
|
}
|
|
|
|
template<class P, class N, PropCond pc>
|
|
void
|
|
Lin<P,N,pc>::reschedule(Space& home) {
|
|
x.reschedule(home,*this,pc);
|
|
y.reschedule(home,*this,pc);
|
|
}
|
|
|
|
template<class P, class N, PropCond pc>
|
|
forceinline size_t
|
|
Lin<P,N,pc>::dispose(Space& home) {
|
|
x.cancel(home,*this,pc);
|
|
y.cancel(home,*this,pc);
|
|
(void) Propagator::dispose(home);
|
|
return sizeof(*this);
|
|
}
|
|
|
|
|
|
template<class View>
|
|
void
|
|
eliminate_p(ModEventDelta med, ViewArray<View>& x, FloatVal& c) {
|
|
int n = x.size();
|
|
|
|
if (FloatView::me(med) == ME_FLOAT_VAL) {
|
|
for (int i = n; i--; ) {
|
|
if (x[i].assigned()) {
|
|
c -= x[i].val(); x[i] = x[--n];
|
|
}
|
|
}
|
|
x.size(n);
|
|
}
|
|
}
|
|
|
|
template<class View>
|
|
void
|
|
eliminate_n(ModEventDelta med, ViewArray<View>& y, FloatVal& c) {
|
|
int n = y.size();
|
|
if (FloatView::me(med) == ME_FLOAT_VAL) {
|
|
for (int i = n; i--; ) {
|
|
if (y[i].assigned()) {
|
|
c += y[i].val(); y[i] = y[--n];
|
|
}
|
|
}
|
|
y.size(n);
|
|
}
|
|
}
|
|
|
|
forceinline bool
|
|
infty(const FloatNum& n) {
|
|
return ((n == std::numeric_limits<FloatNum>::infinity()) ||
|
|
(n == -std::numeric_limits<FloatNum>::infinity()));
|
|
}
|
|
|
|
/*
|
|
* Bound consistent linear equation
|
|
*
|
|
*/
|
|
|
|
template<class P, class N>
|
|
forceinline
|
|
Eq<P,N>::Eq(Home home, ViewArray<P>& x, ViewArray<N>& y, FloatVal c)
|
|
: Lin<P,N,PC_FLOAT_BND>(home,x,y,c) {}
|
|
|
|
template<class P, class N>
|
|
ExecStatus
|
|
Eq<P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, FloatVal c) {
|
|
(void) new (home) Eq<P,N>(home,x,y,c);
|
|
return ES_OK;
|
|
}
|
|
|
|
|
|
template<class P, class N>
|
|
forceinline
|
|
Eq<P,N>::Eq(Space& home, Eq<P,N>& p)
|
|
: Lin<P,N,PC_FLOAT_BND>(home,p) {}
|
|
|
|
template<class P, class N>
|
|
Actor*
|
|
Eq<P,N>::copy(Space& home) {
|
|
return new (home) Eq<P,N>(home,*this);
|
|
}
|
|
|
|
template<class P, class N>
|
|
ExecStatus
|
|
Eq<P,N>::propagate(Space& home, const ModEventDelta& med) {
|
|
// Eliminate singletons
|
|
Rounding r;
|
|
eliminate_p<P>(med, x, c);
|
|
eliminate_n<N>(med, y, c);
|
|
|
|
if ((FloatView::me(med) == ME_FLOAT_VAL) && ((x.size() + y.size()) <= 1)) {
|
|
if (x.size() == 1) {
|
|
GECODE_ME_CHECK(x[0].eq(home,c));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
if (y.size() == 1) {
|
|
GECODE_ME_CHECK(y[0].eq(home,-c));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
return (c.in(0.0)) ? home.ES_SUBSUMED(*this) : ES_FAILED;
|
|
}
|
|
|
|
ExecStatus es = ES_FIX;
|
|
bool assigned = true;
|
|
|
|
// Propagate max bound for positive variables
|
|
for (int i = x.size(); i--; ) {
|
|
// Compute bound
|
|
FloatNum sl = c.max();
|
|
for (int j = x.size(); j--; ) {
|
|
if (i == j) continue;
|
|
sl = r.sub_up(sl,x[j].min());
|
|
}
|
|
for (int j = y.size(); j--; )
|
|
sl = r.add_up(sl,y[j].max());
|
|
ModEvent me = x[i].lq(home,sl);
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me != ME_FLOAT_VAL)
|
|
assigned = false;
|
|
if (me_modified(me))
|
|
es = ES_NOFIX;
|
|
}
|
|
// Propagate min bound for negative variables
|
|
for (int i = y.size(); i--; ) {
|
|
// Compute bound
|
|
FloatNum sl = -c.max();
|
|
for (int j = x.size(); j--; )
|
|
sl = r.add_down(sl,x[j].min());
|
|
for (int j = y.size(); j--; ) {
|
|
if (i == j) continue;
|
|
sl = r.sub_down(sl,y[j].max());
|
|
}
|
|
ModEvent me = y[i].gq(home,sl);
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me != ME_FLOAT_VAL)
|
|
assigned = false;
|
|
if (me_modified(me))
|
|
es = ES_NOFIX;
|
|
}
|
|
|
|
// Propagate min bound for positive variables
|
|
for (int i = x.size(); i--; ) {
|
|
// Compute bound
|
|
FloatNum su = c.min();
|
|
for (int j = x.size(); j--; ) {
|
|
if (i == j) continue;
|
|
su = r.sub_down(su,x[j].max());
|
|
}
|
|
for (int j = y.size(); j--; )
|
|
su = r.add_down(su,y[j].min());
|
|
ModEvent me = x[i].gq(home,su);
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me != ME_FLOAT_VAL)
|
|
assigned = false;
|
|
if (me_modified(me))
|
|
es = ES_NOFIX;
|
|
}
|
|
// Propagate max bound for negative variables
|
|
for (int i = y.size(); i--; ) {
|
|
// Compute bound
|
|
FloatNum su = -c.min();
|
|
for (int j = x.size(); j--; )
|
|
su = r.add_up(su,x[j].max());
|
|
for (int j = y.size(); j--; ) {
|
|
if (i == j) continue;
|
|
su = r.sub_up(su,y[j].min());
|
|
}
|
|
ModEvent me = y[i].lq(home,su);
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me != ME_FLOAT_VAL)
|
|
assigned = false;
|
|
if (me_modified(me))
|
|
es = ES_NOFIX;
|
|
}
|
|
|
|
return assigned ? home.ES_SUBSUMED(*this) : es;
|
|
}
|
|
|
|
|
|
/*
|
|
* Bound consistent linear inequation
|
|
*
|
|
*/
|
|
|
|
template<class P, class N>
|
|
forceinline
|
|
Lq<P,N>::Lq(Home home, ViewArray<P>& x, ViewArray<N>& y, FloatVal c)
|
|
: Lin<P,N,PC_FLOAT_BND>(home,x,y,c) {}
|
|
|
|
template<class P, class N>
|
|
ExecStatus
|
|
Lq<P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, FloatVal c) {
|
|
(void) new (home) Lq<P,N>(home,x,y,c);
|
|
return ES_OK;
|
|
}
|
|
|
|
template<class P, class N>
|
|
forceinline
|
|
Lq<P,N>::Lq(Space& home, Lq<P,N>& p)
|
|
: Lin<P,N,PC_FLOAT_BND>(home,p) {}
|
|
|
|
template<class P, class N>
|
|
Actor*
|
|
Lq<P,N>::copy(Space& home) {
|
|
return new (home) Lq<P,N>(home,*this);
|
|
}
|
|
|
|
template<class P, class N>
|
|
ExecStatus
|
|
Lq<P,N>::propagate(Space& home, const ModEventDelta& med) {
|
|
// Eliminate singletons
|
|
FloatNum sl = 0.0;
|
|
|
|
Rounding r;
|
|
|
|
if (FloatView::me(med) == ME_FLOAT_VAL) {
|
|
for (int i = x.size(); i--; ) {
|
|
if (x[i].assigned()) {
|
|
c -= x[i].val(); x.move_lst(i);
|
|
} else {
|
|
sl = r.sub_up(sl,x[i].min());
|
|
}
|
|
}
|
|
for (int i = y.size(); i--; ) {
|
|
if (y[i].assigned()) {
|
|
c += y[i].val(); y.move_lst(i);
|
|
} else {
|
|
sl = r.add_up(sl,y[i].max());
|
|
}
|
|
}
|
|
if ((x.size() + y.size()) <= 1) {
|
|
if (x.size() == 1) {
|
|
GECODE_ME_CHECK(x[0].lq(home,c.max()));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
if (y.size() == 1) {
|
|
GECODE_ME_CHECK(y[0].gq(home,(-c).min()));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
return (c.max() >= 0) ? home.ES_SUBSUMED(*this) : ES_FAILED;
|
|
}
|
|
} else {
|
|
for (int i = x.size(); i--; )
|
|
sl = r.sub_up(sl,x[i].min());
|
|
for (int i = y.size(); i--; )
|
|
sl = r.add_up(sl,y[i].max());
|
|
}
|
|
|
|
sl = r.add_up(sl,c.max());
|
|
|
|
ExecStatus es = ES_FIX;
|
|
bool assigned = true;
|
|
for (int i = x.size(); i--; ) {
|
|
assert(!x[i].assigned());
|
|
FloatNum slx = r.add_up(sl,x[i].min());
|
|
ModEvent me = x[i].lq(home,slx);
|
|
if (me == ME_FLOAT_FAILED)
|
|
return ES_FAILED;
|
|
if (me != ME_FLOAT_VAL)
|
|
assigned = false;
|
|
if (me_modified(me))
|
|
es = ES_NOFIX;
|
|
}
|
|
|
|
for (int i = y.size(); i--; ) {
|
|
assert(!y[i].assigned());
|
|
FloatNum sly = r.sub_up(y[i].max(),sl);
|
|
ModEvent me = y[i].gq(home,sly);
|
|
if (me == ME_FLOAT_FAILED)
|
|
return ES_FAILED;
|
|
if (me != ME_FLOAT_VAL)
|
|
assigned = false;
|
|
if (me_modified(me))
|
|
es = ES_NOFIX;
|
|
}
|
|
|
|
return assigned ? home.ES_SUBSUMED(*this) : es;
|
|
}
|
|
|
|
}}}
|
|
|
|
// STATISTICS: float-prop
|
|
|