1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
Jip J. Dekker 1d9faf38de Squashed 'software/gecode/' content from commit 313e8764
git-subtree-dir: software/gecode
git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
2021-06-16 14:02:33 +10:00

251 lines
8.3 KiB
C++
Executable File

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Vincent Barichard <Vincent.Barichard@univ-angers.fr>
*
* Copyright:
* Vincent Barichard, 2012
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
namespace Gecode { namespace Float { namespace Trigonometric {
/*
* ASin projection function
*
*/
template<class V>
void aSinProject(Rounding& r, const V& aSinIv, FloatNum& iv_min, FloatNum& iv_max, int& n_min, int& n_max) {
#define I0_PI_2I FloatVal(0,pi_half_upper())
#define IPI_2_PII FloatVal(pi_half_lower(),pi_upper())
#define IPI_3PI_2I FloatVal(pi_lower(),3*pi_half_upper())
#define I3PI_2_2PII FloatVal(3*pi_half_lower(),pi_twice_upper())
#define POS(X) ((I0_PI_2I.in(X))?0: (IPI_2_PII.in(X))?1: (IPI_3PI_2I.in(X))?2: 3 )
#define ASININF_DOWN r.asin_down(aSinIv.min())
#define ASINSUP_UP r.asin_up(aSinIv.max())
// 0 <=> in [0;PI/2]
// 1 <=> in [PI/2;PI]
// 2 <=> in [PI;3*PI/2]
// 3 <=> in [3*PI/2;2*PI]
switch ( POS(iv_min) )
{
case 0:
if (r.sin_down(iv_min) > aSinIv.max()) { n_min++; iv_min = -ASINSUP_UP; }
else if (r.sin_up(iv_min) < aSinIv.min()) { iv_min = ASININF_DOWN; }
break;
case 1:
if (r.sin_down(iv_min) > aSinIv.max()) { n_min++; iv_min = -ASINSUP_UP; }
else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; }
break;
case 2:
if (r.sin_down(iv_min) > aSinIv.max()) { n_min++; iv_min = -ASINSUP_UP; }
else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; }
break;
case 3:
if (r.sin_down(iv_min) > aSinIv.max()) { n_min+=3; iv_min = -ASINSUP_UP; }
else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; }
break;
default:
GECODE_NEVER;
break;
}
// 0 <=> in [0;PI/2]
// 1 <=> in [PI/2;PI]
// 2 <=> in [PI;3*PI/2]
// 3 <=> in [3*PI/2;2*PI]
switch ( POS(iv_max) )
{
case 0:
if (r.sin_down(iv_max) > aSinIv.max()) { iv_max = ASINSUP_UP; }
else if (r.sin_up(iv_max) < aSinIv.min()) { n_max--; iv_max = -ASININF_DOWN; }
break;
case 1:
if (r.sin_down(iv_max) > aSinIv.max()) { iv_max = ASINSUP_UP; }
else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; }
break;
case 2:
if (r.sin_down(iv_max) > aSinIv.max()) { iv_max = ASINSUP_UP; }
else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; }
break;
case 3:
if (r.sin_down(iv_max) > aSinIv.max()) { n_max+=2; iv_max = ASINSUP_UP; }
else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; }
break;
default:
GECODE_NEVER;
break;
}
#undef ASININF_DOWN
#undef ASINSUP_UP
#undef POS
#undef I0_PI_2I
#undef IPI_2_PII
#undef IPI_3PI_2I
#undef I3PI_2_2PII
}
/*
* Bounds consistent sinus operator
*
*/
template<class A, class B>
ExecStatus
Sin<A,B>::dopropagate(Space& home, A x0, B x1) {
GECODE_ME_CHECK(x1.eq(home,sin(x0.val())));
Rounding r;
int n_min = 2*static_cast<int>(r.div_up(x0.min(), pi_twice_upper()));
int n_max = 2*static_cast<int>(r.div_up(x0.max(), pi_twice_upper()));
if (x0.min() < 0) n_min-=2;
if (x0.max() < 0) n_max-=2;
FloatNum iv_min = r.sub_down(x0.min(),r.mul_down(n_min, pi_upper()));
FloatNum iv_max = r.sub_up (x0.max(),r.mul_down(n_max, pi_upper()));
aSinProject(r,x1,iv_min,iv_max,n_min,n_max);
FloatNum n_iv_min = r.add_down(iv_min,r.mul_down(n_min, pi_upper()));
FloatNum n_iv_max = r.add_up (iv_max,r.mul_down(n_max, pi_upper()));
if (n_iv_min > n_iv_max) return ES_FAILED;
GECODE_ME_CHECK(x0.eq(home,FloatVal(n_iv_min,n_iv_max)));
GECODE_ME_CHECK(x1.eq(home,sin(x0.val()))); // Redo sin because with x0 reduction, sin may be more accurate
return ES_OK;
}
template<class A, class B>
forceinline
Sin<A,B>::Sin(Home home, A x0, B x1)
: MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,x0,x1) {}
template<class A, class B>
ExecStatus
Sin<A,B>::post(Home home, A x0, B x1) {
if (x0 == x1) {
GECODE_ME_CHECK(x0.eq(home,0.0));
} else {
GECODE_ME_CHECK(x1.gq(home,-1.0));
GECODE_ME_CHECK(x1.lq(home,1.0));
GECODE_ES_CHECK(dopropagate(home,x0,x1));
(void) new (home) Sin<A,B>(home,x0,x1);
}
return ES_OK;
}
template<class A, class B>
forceinline
Sin<A,B>::Sin(Space& home, Sin<A,B>& p)
: MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,p) {}
template<class A, class B>
Actor*
Sin<A,B>::copy(Space& home) {
return new (home) Sin<A,B>(home,*this);
}
template<class A, class B>
ExecStatus
Sin<A,B>::propagate(Space& home, const ModEventDelta&) {
GECODE_ES_CHECK(dopropagate(home,x0,x1));
return (x0.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX;
}
/*
* Bounds consistent cosinus operator
*
*/
template<class A, class B>
ExecStatus
Cos<A,B>::dopropagate(Space& home, A x0, B x1) {
GECODE_ME_CHECK(x1.eq(home,cos(x0.val())));
Rounding r;
FloatVal x0Trans = x0.val() + FloatVal::pi_half();
int n_min = 2*static_cast<int>(r.div_up(x0Trans.min(), pi_twice_upper()));
int n_max = 2*static_cast<int>(r.div_up(x0Trans.max(), pi_twice_upper()));
if (x0Trans.min() < 0) n_min-=2;
if (x0Trans.max() < 0) n_max-=2;
FloatNum iv_min = r.sub_down(x0Trans.min(),r.mul_down(n_min, pi_upper()));
FloatNum iv_max = r.sub_up (x0Trans.max(),r.mul_down(n_max, pi_upper()));
aSinProject(r,x1,iv_min,iv_max,n_min,n_max);
FloatNum n_iv_min = r.add_down(iv_min,r.mul_down(n_min, pi_upper()));
FloatNum n_iv_max = r.add_up (iv_max,r.mul_down(n_max, pi_upper()));
if (n_iv_min > n_iv_max) return ES_FAILED;
GECODE_ME_CHECK(x0.eq(home,FloatVal(n_iv_min,n_iv_max) - FloatVal::pi_half()));
GECODE_ME_CHECK(x1.eq(home,cos(x0.val()))); // Redo sin because with x0 reduction, sin may be more accurate
return ES_OK;
}
template<class A, class B>
forceinline
Cos<A,B>::Cos(Home home, A x0, B x1)
: MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,x0,x1) {}
template<class A, class B>
ExecStatus
Cos<A,B>::post(Home home, A x0, B x1) {
if (x0 == x1) {
GECODE_ME_CHECK(x0.gq(home,0.7390851332151));
GECODE_ME_CHECK(x0.lq(home,0.7390851332152));
bool mod;
do {
mod = false;
GECODE_ME_CHECK_MODIFIED(mod,x0.eq(home,cos(x0.val())));
} while (mod);
} else {
GECODE_ME_CHECK(x1.gq(home,-1.0));
GECODE_ME_CHECK(x1.lq(home,1.0));
GECODE_ES_CHECK(dopropagate(home,x0,x1));
(void) new (home) Cos<A,B>(home,x0,x1);
}
return ES_OK;
}
template<class A, class B>
forceinline
Cos<A,B>::Cos(Space& home, Cos<A,B>& p)
: MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,p) {}
template<class A, class B>
Actor*
Cos<A,B>::copy(Space& home) {
return new (home) Cos<A,B>(home,*this);
}
template<class A, class B>
ExecStatus
Cos<A,B>::propagate(Space& home, const ModEventDelta&) {
GECODE_ES_CHECK(dopropagate(home,x0,x1));
return (x0.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX;
}
}}}
// STATISTICS: float-prop