git-subtree-dir: software/gecode git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
228 lines
7.3 KiB
C++
Executable File
228 lines
7.3 KiB
C++
Executable File
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Vincent Barichard <Vincent.Barichard@univ-angers.fr>
|
|
*
|
|
* Copyright:
|
|
* Vincent Barichard, 2012
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
namespace Gecode { namespace Float { namespace Trigonometric {
|
|
/*
|
|
* ATan projection function
|
|
*
|
|
*/
|
|
template<class V>
|
|
void
|
|
aTanProject(Rounding& r, const V& aTanIv, FloatNum& iv_min, FloatNum& iv_max, int& n_min, int& n_max) {
|
|
#define I0_PI_2I FloatVal(0,pi_half_upper())
|
|
#define POS(X) ((I0_PI_2I.in(X))?0:1)
|
|
#define ATANINF_DOWN r.atan_down(aTanIv.min())
|
|
#define ATANSUP_UP r.atan_up(aTanIv.max())
|
|
|
|
// 0 <=> in [0;PI/2]
|
|
// 1 <=> in [PI/2;PI]
|
|
switch ( POS(iv_min) )
|
|
{
|
|
case 0:
|
|
if (r.tan_down(iv_min) > aTanIv.max()) { n_min++; iv_min = ATANINF_DOWN; }
|
|
else if (r.tan_up(iv_min) < aTanIv.min()) { iv_min = ATANINF_DOWN; }
|
|
break;
|
|
case 1:
|
|
if (r.tan_down(iv_min) > aTanIv.max()) { n_min+=2; iv_min = ATANINF_DOWN; }
|
|
else if (r.tan_up(iv_min) < aTanIv.min()) { n_min++; iv_min = ATANINF_DOWN; }
|
|
break;
|
|
default:
|
|
GECODE_NEVER;
|
|
break;
|
|
}
|
|
|
|
// 0 <=> in [0;PI/2]
|
|
// 1 <=> in [PI/2;PI]
|
|
switch ( POS(iv_max) )
|
|
{
|
|
case 0:
|
|
if (r.tan_down(iv_max) > aTanIv.max()) { iv_max = ATANSUP_UP; }
|
|
else if (r.tan_up(iv_max) < aTanIv.min()) { n_max--; iv_max = ATANSUP_UP; }
|
|
break;
|
|
case 1:
|
|
if (r.tan_down(iv_max) > aTanIv.max()) { n_max++; iv_max = ATANSUP_UP; }
|
|
else if (r.tan_up(iv_max) < aTanIv.min()) { iv_max = ATANSUP_UP; }
|
|
break;
|
|
default:
|
|
GECODE_NEVER;
|
|
break;
|
|
}
|
|
#undef ATANINF_DOWN
|
|
#undef ATANSUP_UP
|
|
#undef POS
|
|
#undef I0_PI_2I
|
|
}
|
|
|
|
/*
|
|
* Bounds consistent tangent operator
|
|
*
|
|
*/
|
|
|
|
template<class A, class B>
|
|
ExecStatus
|
|
Tan<A,B>::dopropagate(Space& home, A x0, B x1) {
|
|
Rounding r;
|
|
int n_min = static_cast<int>(r.div_up(x0.min() + pi_half_upper(), pi_upper()));
|
|
int n_max = static_cast<int>(r.div_up(x0.max() + pi_half_upper(), pi_upper()));
|
|
|
|
if (x0 == x1) {
|
|
#define I0_PI_2I FloatVal(0,pi_half_upper())
|
|
if (I0_PI_2I.in(x0.max())) GECODE_ME_CHECK(x0.lq(home, 0));
|
|
if (I0_PI_2I.in(-x0.min())) GECODE_ME_CHECK(x0.gq(home, 0));
|
|
#undef I0_PI_2I
|
|
|
|
n_min = static_cast<int>(r.div_up(x0.min(), pi_upper()));
|
|
n_max = static_cast<int>(r.div_up(x0.max(), pi_upper()));
|
|
|
|
FloatNum x0_min;
|
|
FloatNum x0_max;
|
|
FloatNum t = x0.min();
|
|
do {
|
|
x0_min = t;
|
|
if (r.tan_down(x0_min) > x0_min) n_min++;
|
|
t = r.add_down(r.mul_up(n_min,pi_upper()),r.tan_down(x0_min));
|
|
} while (t > x0_min);
|
|
t = r.sub_down(r.mul_up(2*n_max,pi_upper()),x0.max());
|
|
do {
|
|
x0_max = t;
|
|
if (r.tan_down(x0_max) < x0_max) n_max--;
|
|
t = r.add_up(r.mul_up(n_max,pi_upper()),r.tan_up(x0_max));
|
|
} while (t > x0_max);
|
|
x0_max = r.sub_up(r.mul_up(2*n_max,pi_upper()),x0_max);
|
|
|
|
if (x0_min > x0_max) return ES_FAILED;
|
|
GECODE_ME_CHECK(x0.eq(home,FloatVal(x0_min,x0_max)));
|
|
} else {
|
|
GECODE_ME_CHECK(x1.eq(home,tan(x0.val())));
|
|
n_min = static_cast<int>(r.div_up(x0.min(), pi_upper()));
|
|
n_max = static_cast<int>(r.div_up(x0.max(), pi_upper()));
|
|
if (x0.min() < 0) n_min--;
|
|
if (x0.max() < 0) n_max--;
|
|
FloatNum iv_min = r.sub_down(x0.min(),r.mul_down(n_min, pi_upper()));
|
|
FloatNum iv_max = r.sub_up (x0.max(),r.mul_down(n_max, pi_upper()));
|
|
aTanProject(r,x1,iv_min,iv_max,n_min,n_max);
|
|
FloatNum n_iv_min = r.add_down(iv_min,r.mul_down(n_min, pi_upper()));
|
|
FloatNum n_iv_max = r.add_up (iv_max,r.mul_down(n_max, pi_upper()));
|
|
if (n_iv_min > n_iv_max) return ES_FAILED;
|
|
GECODE_ME_CHECK(x0.eq(home,FloatVal(n_iv_min,n_iv_max)));
|
|
GECODE_ME_CHECK(x1.eq(home,tan(x0.val()))); // Redo tan because with x0 reduction, sin may be more accurate
|
|
}
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
template<class A, class B>
|
|
forceinline
|
|
Tan<A,B>::Tan(Home home, A x0, B x1)
|
|
: MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,x0,x1) {}
|
|
|
|
template<class A, class B>
|
|
ExecStatus
|
|
Tan<A,B>::post(Home home, A x0, B x1) {
|
|
if (x0 == x1) {
|
|
#define I0_PI_2I FloatVal(0,pi_half_upper())
|
|
if (I0_PI_2I.in(x0.max())) GECODE_ME_CHECK(x0.lq(home, 0));
|
|
if (I0_PI_2I.in(-x0.min())) GECODE_ME_CHECK(x0.gq(home, 0));
|
|
#undef I0_PI_2I
|
|
}
|
|
GECODE_ES_CHECK(dopropagate(home,x0,x1));
|
|
(void) new (home) Tan<A,B>(home,x0,x1);
|
|
return ES_OK;
|
|
}
|
|
|
|
template<class A, class B>
|
|
forceinline
|
|
Tan<A,B>::Tan(Space& home, Tan<A,B>& p)
|
|
: MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,p) {}
|
|
|
|
template<class A, class B>
|
|
Actor*
|
|
Tan<A,B>::copy(Space& home) {
|
|
return new (home) Tan<A,B>(home,*this);
|
|
}
|
|
|
|
template<class A, class B>
|
|
ExecStatus
|
|
Tan<A,B>::propagate(Space& home, const ModEventDelta&) {
|
|
GECODE_ES_CHECK(dopropagate(home,x0,x1));
|
|
return (x0.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX;
|
|
}
|
|
|
|
/*
|
|
* Bounds consistent arc tangent operator
|
|
*
|
|
*/
|
|
|
|
template<class A, class B>
|
|
forceinline
|
|
ATan<A,B>::ATan(Home home, A x0, B x1)
|
|
: MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,x0,x1) {}
|
|
|
|
template<class A, class B>
|
|
ExecStatus
|
|
ATan<A,B>::post(Home home, A x0, B x1) {
|
|
if (x0 == x1) {
|
|
GECODE_ME_CHECK(x0.eq(home,0.0));
|
|
} else {
|
|
GECODE_ME_CHECK(x1.eq(home,atan(x0.domain())));
|
|
GECODE_ME_CHECK(x0.eq(home,tan(x1.domain())));
|
|
(void) new (home) ATan<A,B>(home,x0,x1);
|
|
}
|
|
return ES_OK;
|
|
}
|
|
|
|
|
|
template<class A, class B>
|
|
forceinline
|
|
ATan<A,B>::ATan(Space& home, ATan<A,B>& p)
|
|
: MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,p) {}
|
|
|
|
template<class A, class B>
|
|
Actor*
|
|
ATan<A,B>::copy(Space& home) {
|
|
return new (home) ATan<A,B>(home,*this);
|
|
}
|
|
|
|
template<class A, class B>
|
|
ExecStatus
|
|
ATan<A,B>::propagate(Space& home, const ModEventDelta&) {
|
|
GECODE_ME_CHECK(x1.eq(home,atan(x0.domain())));
|
|
GECODE_ME_CHECK(x0.eq(home,tan(x1.domain())));
|
|
return (x0.assigned() && x1.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX;
|
|
}
|
|
|
|
}}}
|
|
|
|
// STATISTICS: float-prop
|
|
|