git-subtree-dir: software/gecode git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
300 lines
9.2 KiB
C++
Executable File
300 lines
9.2 KiB
C++
Executable File
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Christian Schulte <schulte@gecode.org>
|
|
*
|
|
* Copyright:
|
|
* Christian Schulte, 2007
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
namespace Gecode { namespace Int { namespace Circuit {
|
|
|
|
template<class View, class Offset>
|
|
forceinline
|
|
Base<View,Offset>::Base(Home home, ViewArray<View>& x, Offset& o0)
|
|
: NaryPropagator<View,Int::PC_INT_DOM>(home,x),
|
|
start(0), y(home,x), o(o0) {
|
|
home.notice(*this,AP_WEAKLY);
|
|
}
|
|
|
|
template<class View, class Offset>
|
|
forceinline
|
|
Base<View,Offset>::Base(Space& home, Base<View,Offset>& p)
|
|
: NaryPropagator<View,Int::PC_INT_DOM>(home,p), start(p.start) {
|
|
o.update(p.o);
|
|
y.update(home,p.y);
|
|
}
|
|
|
|
/// Information required for non-recursive checking for a single scc
|
|
template<class View>
|
|
class NodeInfo {
|
|
public:
|
|
int min, low, pre;
|
|
Int::ViewValues<View> v;
|
|
};
|
|
|
|
/// Information for performing a recorded tell
|
|
template<class View>
|
|
class TellInfo {
|
|
public:
|
|
View x; int n;
|
|
};
|
|
|
|
template<class View, class Offset>
|
|
ExecStatus
|
|
Base<View,Offset>::connected(Space& home) {
|
|
int n = x.size();
|
|
|
|
/// First non-assigned node reachable from start
|
|
{
|
|
int v = start;
|
|
/// Number of nodes not yet visited
|
|
int m = n;
|
|
while (x[v].assigned()) {
|
|
m--;
|
|
v = o(x[v]).val();
|
|
// Reached start node again, check whether all nodes have been visited
|
|
if (start == v)
|
|
return (m == 0) ? home.ES_SUBSUMED(*this) : ES_FAILED;
|
|
}
|
|
start = v;
|
|
}
|
|
|
|
/// Information needed for checking scc's
|
|
Region r;
|
|
typedef typename Offset::ViewType OView;
|
|
NodeInfo<OView>* si = r.alloc<NodeInfo<OView> >(n);
|
|
unsigned int n_edges = 0;
|
|
for (int i=0; i<n; i++) {
|
|
n_edges += x[i].size();
|
|
si[i].pre=-1;
|
|
}
|
|
|
|
// Stack to remember which nodes have not been processed completely
|
|
Support::StaticStack<int,Region> next(r,n);
|
|
|
|
// Array to remember which mandatory tells need to be done
|
|
TellInfo<OView>* eq = r.alloc<TellInfo<OView> >(n);
|
|
int n_eq = 0;
|
|
|
|
// Array to remember which edges need to be pruned
|
|
TellInfo<OView>* nq = r.alloc<TellInfo<OView> >(n_edges);
|
|
int n_nq = 0;
|
|
|
|
/*
|
|
* Check whether there is a single strongly connected component.
|
|
* This is a downstripped version of Tarjan's algorithm as
|
|
* the computation of sccs proper is not needed. In addition, it
|
|
* checks a mandatory condition for a graph to be Hamiltonian
|
|
* (due to Mats Carlsson).
|
|
*
|
|
* To quote Mats: Suppose you do a depth-first search of the graph.
|
|
* In that search, the root node will have a number of child subtrees
|
|
* T1, ..., Tn. By construction, if i<j then there is no edge from
|
|
* Ti to Tj. The necessary condition for Hamiltonianicity is that
|
|
* there be an edge from Ti+1 to Ti, for 0 < i < n.
|
|
*
|
|
* In addition, we do the following: if there is only a single edge
|
|
* from Ti+1 to Ti, then it must be mandatory and the variable must
|
|
* be assigned to that value.
|
|
*
|
|
* The same holds true for a back edge from T0 to the root node.
|
|
*
|
|
* Then, all edges that reach from Ti+k+1 to Ti can be pruned.
|
|
*
|
|
*/
|
|
|
|
{
|
|
// Start always at node start
|
|
int i = start;
|
|
// Counter for scc
|
|
int cnt = 0;
|
|
// Smallest preorder number of last subtree (initially, the root node)
|
|
int subtree_min = 0;
|
|
// Largest preorder number of last subtree (initially, the root node)
|
|
int subtree_max = 0;
|
|
// Number of back edges into last subtree or root
|
|
int back = 0;
|
|
start:
|
|
si[i].min = si[i].pre = si[i].low = cnt++;
|
|
si[i].v.init(o(x[i]));
|
|
do {
|
|
if (si[si[i].v.val()].pre < 0) {
|
|
next.push(i);
|
|
i=si[i].v.val();
|
|
goto start;
|
|
} else if ((subtree_min <= si[si[i].v.val()].pre) &&
|
|
(si[si[i].v.val()].pre <= subtree_max)) {
|
|
back++;
|
|
eq[n_eq].x = o(x[i]);
|
|
eq[n_eq].n = si[i].v.val();
|
|
} else if (si[si[i].v.val()].pre < subtree_min) {
|
|
nq[n_nq].x = o(x[i]);
|
|
nq[n_nq].n = si[i].v.val();
|
|
n_nq++;
|
|
}
|
|
cont:
|
|
if (si[si[i].v.val()].low < si[i].min)
|
|
si[i].min = si[si[i].v.val()].low;
|
|
++si[i].v;
|
|
} while (si[i].v());
|
|
if (si[i].min < si[i].low) {
|
|
si[i].low = si[i].min;
|
|
} else if (i != start) {
|
|
// If it is not the first node visited, there is more than one SCC
|
|
return ES_FAILED;
|
|
}
|
|
if (!next.empty()) {
|
|
i=next.pop();
|
|
if (i == start) {
|
|
// No back edge
|
|
if (back == 0)
|
|
return ES_FAILED;
|
|
// Exactly one back edge, make it mandatory (keep topmost entry)
|
|
if (back == 1)
|
|
n_eq++;
|
|
back = 0;
|
|
subtree_min = subtree_max+1;
|
|
subtree_max = cnt-1;
|
|
}
|
|
goto cont;
|
|
}
|
|
|
|
// Whether all nodes have been visited
|
|
if (cnt != n)
|
|
return ES_FAILED;
|
|
|
|
/*
|
|
* Whether there is more than one subtree
|
|
*
|
|
* This propagation rule is taken from: Kathryn Glenn Francis,
|
|
* Peter Stuckey, Explaining Circuit Propagation,
|
|
* Constraints (2014) 19:1-29.
|
|
*
|
|
*/
|
|
if (subtree_min > 1) {
|
|
for (Int::ViewValues<OView> v(o(x[start])); v(); ++v)
|
|
if (si[v.val()].pre < subtree_min) {
|
|
nq[n_nq].x = o(x[v.val()]);
|
|
nq[n_nq].n = v.val();
|
|
n_nq++;
|
|
}
|
|
}
|
|
|
|
ExecStatus es = ES_FIX;
|
|
// Assign all mandatory edges
|
|
while (n_eq-- > 0) {
|
|
ModEvent me = eq[n_eq].x.eq(home,eq[n_eq].n);
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me_modified(me))
|
|
es = ES_NOFIX;
|
|
}
|
|
|
|
// Remove all edges that would require a non-simple cycle
|
|
while (n_nq-- > 0) {
|
|
ModEvent me = nq[n_nq].x.nq(home,nq[n_nq].n);
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me_modified(me))
|
|
es = ES_NOFIX;
|
|
}
|
|
|
|
// Move start to different node for next run
|
|
start = o(x[start]).min();
|
|
|
|
return es;
|
|
}
|
|
}
|
|
|
|
template<class View, class Offset>
|
|
ExecStatus
|
|
Base<View,Offset>::path(Space& home) {
|
|
// Prunes that partial assigned paths are not completed to cycles
|
|
|
|
int n=x.size();
|
|
|
|
Region r;
|
|
|
|
// The path starting at assigned x[i] ends at x[end[j]] which is
|
|
// not assigned.
|
|
int* end = r.alloc<int>(n);
|
|
for (int i=0; i<n; i++)
|
|
end[i]=-1;
|
|
|
|
// A stack that records all indices i such that end[i] != -1
|
|
Support::StaticStack<int,Region> tell(r,n);
|
|
|
|
typedef typename Offset::ViewType OView;
|
|
for (int i=0; i<y.size(); i++) {
|
|
assert(!y[i].assigned());
|
|
// Non-assigned views serve as starting points for assigned paths
|
|
Int::ViewValues<OView> v(o(y[i]));
|
|
// Try all connected values
|
|
do {
|
|
int j0=v.val();
|
|
// Starting point for not yet followed assigned path found
|
|
if (x[j0].assigned() && (end[j0] < 0)) {
|
|
// Follow assigned path until non-assigned view:
|
|
// all assigned view on the paths can be skipped, as
|
|
// if x[i] is assigned to j, then x[j] will only have
|
|
// x[i] as predecessor due to propagating distinct.
|
|
int j = j0;
|
|
do {
|
|
j=o(x[j]).val();
|
|
} while (x[j].assigned());
|
|
// Now there cannot be a cycle from x[j] to x[v.val()]!
|
|
// However, the tell cannot be done here as j might be
|
|
// equal to i and might hence kill the iterator v!
|
|
end[j0]=j; tell.push(j0);
|
|
}
|
|
++v;
|
|
} while (v());
|
|
}
|
|
|
|
// Now do the tells based on the end information
|
|
while (!tell.empty()) {
|
|
int i = tell.pop();
|
|
assert(end[i] >= 0);
|
|
GECODE_ME_CHECK(o(x[end[i]]).nq(home,i));
|
|
}
|
|
return ES_NOFIX;
|
|
}
|
|
|
|
template<class View, class Offset>
|
|
forceinline size_t
|
|
Base<View,Offset>::dispose(Space& home) {
|
|
home.ignore(*this,AP_WEAKLY);
|
|
(void) NaryPropagator<View,Int::PC_INT_DOM>::dispose(home);
|
|
return sizeof(*this);
|
|
}
|
|
|
|
}}}
|
|
|
|
// STATISTICS: int-prop
|
|
|