1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
Jip J. Dekker 1d9faf38de Squashed 'software/gecode/' content from commit 313e8764
git-subtree-dir: software/gecode
git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
2021-06-16 14:02:33 +10:00

271 lines
9.9 KiB
C++

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Patrick Pekczynski <pekczynski@ps.uni-sb.de>
*
* Contributing authors:
* Christian Schulte <schulte@gecode.org>
* Guido Tack <tack@gecode.org>
*
* Copyright:
* Patrick Pekczynski, 2004/2005
* Christian Schulte, 2009
* Guido Tack, 2009
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef GECODE_INT_GCC_HH
#define GECODE_INT_GCC_HH
#include <gecode/int.hh>
/**
* \namespace Gecode::Int::GCC
* \brief Global cardinality propagators (Counting)
*/
#include <gecode/int/gcc/view.hpp>
#include <gecode/int/gcc/bnd-sup.hpp>
#include <gecode/int/gcc/dom-sup.hpp>
namespace Gecode { namespace Int { namespace GCC {
/**
* \brief Value consistent global cardinality propagator
*
* Requires \code #include <gecode/int/gcc.hh> \endcode
* \ingroup FuncIntProp
*/
template<class Card>
class Val : public Propagator {
protected:
/// Views on which to perform value-propagation
ViewArray<IntView> x;
/// Array containing either fixed cardinalities or CardViews
ViewArray<Card> k;
/// Constructor for posting
Val(Home home, ViewArray<IntView>& x, ViewArray<Card>& k);
/// Constructor for cloning \a p
Val(Space& home, Val<Card>& p);
public:
/// Copy propagator during cloning
virtual Actor* copy(Space& home);
/// Cost funtion returning high linear
virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
/// Schedule function
virtual void reschedule(Space& home);
/// Perform propagation
virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
/// Destructor
virtual size_t dispose(Space& home);
/// Post propagator for views \a x and cardinalities \a k
static ExecStatus post(Home home,
ViewArray<IntView>& x, ViewArray<Card>& k);
};
/**
* \brief Bounds consistent global cardinality propagator
*
* The algorithm is taken from:
* Claude-Guy Quimper, Peter van Beek, Alejandro López-Ortiz,
* Alexander Golynski, and Sayyed Bashir Sadjad. An Efficient
* Bounds Consistency Algorithm for the Global Cardinality
* Constraint, CP 2003, pages 600-614.
*
* This implementation uses the code that is provided
* by Peter Van Beek:
* http://ai.uwaterloo.ca/~vanbeek/software/software.html
* The code here has only been slightly modified to fit Gecode
* (taking idempotent/non-idempotent propagation into account)
* and uses a more efficient layout of datastructures (keeping the
* number of different arrays small).
*
* The Bnd class is used to post the propagator and BndImp
* is the actual implementation taking shared variables into account.
*
* Requires \code #include <gecode/int/gcc.hh> \endcode
* \ingroup FuncIntProp
*/
template<class Card>
class Bnd : public Propagator {
protected:
/// Views on which to perform bounds-propagation
ViewArray<IntView> x;
/// Views on which to perform value-propagation (subset of \c x)
ViewArray<IntView> y;
/// Array containing either fixed cardinalities or CardViews
ViewArray<Card> k;
/**
* \brief Data structure storing the sum of the views lower bounds
* Necessary for reasoning about the interval capacities in the
* propagation algorithm.
*/
PartialSum<Card> lps;
/// Data structure storing the sum of the views upper bounds
PartialSum<Card> ups;
/**
* \brief Stores whether cardinalities are all assigned
*
* If all cardinalities are assigned the propagation algorithm
* only has to perform propagation for the upper bounds.
*/
bool card_fixed;
/**
* \brief Stores whether the minium required occurences of
* the cardinalities are all zero. If so, we do not need
* to perform lower bounds propagation.
*/
bool skip_lbc;
/// Constructor for cloning \a p
Bnd(Space& home, Bnd<Card>& p);
/// Prune cardinality variables with 0 maximum occurrence
ExecStatus pruneCards(Space& home);
/**
* \brief Lower Bounds constraint (LBC) stating
* \f$ \forall j \in \{0, \dots, |k|-1\}:
* \#\{i\in\{0, \dots, |x| - 1\} | x_i = card(k_j)\} \geq min(k_j)\f$
* Hence the lbc constraints the variables such that every value occurs
* at least as often as specified by its lower cardinality bound.
* \param home current space
* \param nb denotes number of unique bounds
* \param hall contains information about the hall structure of the problem
* (cf. HallInfo)
* \param rank ranking information about the variable bounds (cf. Rank)
* \param mu permutation \f$ \mu \f$ such that
* \f$ \forall i\in \{0, \dots, |x|-2\}:
* max(x_{\mu(i)}) \leq max(x_{\mu(i+1)})\f$
* \param nu permutation \f$ \nu \f$ such that
* \f$ \forall i\in \{0, \dots, |x|-2\}:
* min(x_{\mu(i)}) \leq min(x_{\mu(i+1)})\f$
*/
ExecStatus lbc(Space& home, int& nb, HallInfo hall[], Rank rank[],
int mu[], int nu[]);
/**
* \brief Upper Bounds constraint (UBC) stating
* \f$ \forall j \in \{0, \dots, |k|-1\}:
* \#\{i\in\{0, \dots, |x| - 1\} | x_i = card(k_j)\} \leq max(k_j)\f$
* Hence the ubc constraints the variables such that no value occurs
* more often than specified by its upper cardinality bound.
* \param home current space
* \param nb denotes number of unique bounds
* \param hall contains information about the hall structure of the problem
* (cf. HallInfo)
* \param rank ranking information about the variable bounds (cf. Rank)
* \param mu permutation \f$ \mu \f$ such that
* \f$ \forall i\in \{0, \dots, |x|-2\}:
* max(x_{\mu(i)}) \leq max(x_{\mu(i+1)})\f$
* \param nu permutation \f$ \nu \f$ such that
* \f$ \forall i\in \{0, \dots, |x|-2\}:
* min(x_{\mu(i)}) \leq min(x_{\mu(i+1)})\f$
*/
ExecStatus ubc(Space& home, int& nb, HallInfo hall[], Rank rank[],
int mu[], int nu[]);
/// Constructor for posting
Bnd(Home home, ViewArray<IntView>&, ViewArray<Card>&, bool, bool);
public:
/// Copy propagator during cloning
virtual Actor* copy(Space& home);
/// Cost funtion
virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
/// Schedule function
virtual void reschedule(Space& home);
/// Perform propagation
virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
/// Destructor
virtual size_t dispose(Space& home);
/// Post propagator for views \a x and cardinalities \a k
static ExecStatus post(Home home,
ViewArray<IntView>& x, ViewArray<Card>& k);
};
/**
* \brief Domain consistent global cardinality propagator
*
* The algorithm is taken from:
* Claude-Guy Quimper, Peter van Beek, Alejandro López-Ortiz,
* and Alexander Golynski. Improved Algorithms for the
* Global Cardinality Constraint, CP 2004, pages 542-556.
*
* Requires \code #include <gecode/int/gcc.hh> \endcode
* \ingroup FuncIntProp
*/
template<class Card>
class Dom : public Propagator {
protected:
/// Views on which to perform domain-propagation
ViewArray<IntView> x;
/**
* \brief Views used to channel information between \c x and \c k
* (\f$ x \subseteq y \f$).
*/
ViewArray<IntView> y;
/// Array containing either fixed cardinalities or CardViews
ViewArray<Card> k;
/// Propagation is performed on a variable-value graph (used as cache)
VarValGraph<Card>* vvg;
/**
* \brief Stores whether cardinalities are all assigned
*
* If all cardinalities are assigned the propagation algorithm
* only has to perform propagation for the upper bounds.
*/
bool card_fixed;
/// Constructor for cloning \a p
Dom(Space& home, Dom<Card>& p);
/// Constructor for posting
Dom(Home home, ViewArray<IntView>&, ViewArray<Card>&, bool);
public:
/// Copy propagator during cloning
virtual Actor* copy(Space& home);
/// Cost function
virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
/// Schedule function
virtual void reschedule(Space& home);
/// Perform propagation
virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
/// Destructor
virtual size_t dispose(Space& home);
/// Post propagator for views \a x and cardinalities \a k
static ExecStatus post(Home home,
ViewArray<IntView>& x, ViewArray<Card>& k);
};
}}}
#include <gecode/int/gcc/post.hpp>
#include <gecode/int/gcc/val.hpp>
#include <gecode/int/gcc/bnd.hpp>
#include <gecode/int/gcc/dom.hpp>
#endif
// STATISTICS: int-prop