git-subtree-dir: software/gecode git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
247 lines
8.0 KiB
C++
247 lines
8.0 KiB
C++
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Patrick Pekczynski <pekczynski@ps.uni-sb.de>
|
|
*
|
|
* Copyright:
|
|
* Patrick Pekczynski, 2004
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
namespace Gecode { namespace Int { namespace Sorted {
|
|
|
|
/**
|
|
* \brief Compute the sccs of the oriented intersection-graph
|
|
*
|
|
* An y-node \f$y_j\f$ and its corresponding matching mate
|
|
* \f$x_{\phi(j)}\f$ form the smallest possible scc, since both
|
|
* edges \f$e_1(y_j, x_{\phi(j)})\f$ and \f$e_2(x_{\phi(j)},y_j)\f$
|
|
* are both contained in the oriented intersection graph.
|
|
*
|
|
* Hence a scc containg more than two nodes is represented as an
|
|
* array of SccComponent entries,
|
|
* \f$[ y_{j_0},x_{\phi(j_0)},\dots,y_{j_k},x_{\phi(j_k)}]\f$.
|
|
*
|
|
* Parameters
|
|
* scclist ~ resulting sccs
|
|
*/
|
|
|
|
template<class View>
|
|
inline void
|
|
computesccs(ViewArray<View>& x, ViewArray<View>& y,
|
|
int phi[], SccComponent sinfo[], int scclist[]) {
|
|
|
|
// number of sccs is bounded by xs (number of x-nodes)
|
|
int xs = x.size();
|
|
Region r;
|
|
Support::StaticStack<int,Region> cs(r,xs);
|
|
|
|
//select an y node from the graph
|
|
for (int j = 0; j < xs; j++) {
|
|
int yjmin = y[j].min(); // the processed min
|
|
while (!cs.empty() && x[phi[sinfo[cs.top()].rightmost]].max() < yjmin) {
|
|
// the topmost scc cannot "reach" y_j or a node to the right of it
|
|
cs.pop();
|
|
}
|
|
|
|
// a component has the form C(y-Node, matching x-Node)
|
|
// C is a minimal scc in the oriented intersection graph
|
|
// we only store y_j-Node, since \phi(j) gives the matching X-node
|
|
int i = phi[j];
|
|
int ximin = x[i].min();
|
|
while (!cs.empty() && ximin <= y[sinfo[cs.top()].rightmost].max()) {
|
|
// y_j can "reach" cs.top() ,
|
|
// i.e. component c can reach component cs.top()
|
|
// merge c and cs.top() into new component
|
|
int top = cs.top();
|
|
// connecting
|
|
sinfo[sinfo[j].leftmost].left = top;
|
|
sinfo[top].right = sinfo[j].leftmost;
|
|
// moving leftmost
|
|
sinfo[j].leftmost = sinfo[top].leftmost;
|
|
// moving rightmost
|
|
sinfo[sinfo[top].leftmost].rightmost = j;
|
|
cs.pop();
|
|
}
|
|
cs.push(j);
|
|
}
|
|
cs.reset();
|
|
|
|
|
|
// now we mark all components with the respective scc-number
|
|
// labeling is bound by O(k) which is bound by O(n)
|
|
|
|
for (int i = 0; i < xs; i++) {
|
|
if (sinfo[i].left == i) { // only label variables in sccs
|
|
int scc = sinfo[i].rightmost;
|
|
int z = i;
|
|
//bound by the size of the largest scc = k
|
|
while (sinfo[z].right != z) {
|
|
sinfo[z].rightmost = scc;
|
|
scclist[phi[z]] = scc;
|
|
z = sinfo[z].right;
|
|
}
|
|
sinfo[z].rightmost = scc;
|
|
scclist[phi[z]] = scc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Narrowing the domains of the x variables
|
|
*
|
|
* Due to the correspondance between perfect matchings in the "reduced"
|
|
* intersection graph of \a x and \a y views and feasible
|
|
* assignments for the sorted constraint the new domain bounds for
|
|
* views in \a x are computed as
|
|
* - lower bounds:
|
|
* \f$ S_i \geq E_l \f$
|
|
* where \f$y_l\f$ is the leftmost neighbour of \f$x_i\f$
|
|
* - upper bounds:
|
|
* \f$ S_i \leq E_h \f$
|
|
* where \f$y_h\f$ is the rightmost neighbour of \f$x_i\f$
|
|
*/
|
|
|
|
template<class View, bool Perm>
|
|
inline bool
|
|
narrow_domx(Space& home,
|
|
ViewArray<View>& x,
|
|
ViewArray<View>& y,
|
|
ViewArray<View>& z,
|
|
int tau[],
|
|
int[],
|
|
int scclist[],
|
|
SccComponent sinfo[],
|
|
bool& nofix) {
|
|
|
|
int xs = x.size();
|
|
|
|
// For every x node
|
|
for (int i = 0; i < xs; i++) {
|
|
|
|
int xmin = x[i].min();
|
|
/*
|
|
* take the scc-list for the current x node
|
|
* start from the leftmost reachable y node of the scc
|
|
* and check which Y node in the scc is
|
|
* really the rightmost node intersecting x, i.e.
|
|
* search for the greatest lower bound of x
|
|
*/
|
|
int start = sinfo[scclist[i]].leftmost;
|
|
while (y[start].max() < xmin) {
|
|
start = sinfo[start].right;
|
|
}
|
|
|
|
if (Perm) {
|
|
// start is the leftmost-position for x_i
|
|
// that denotes the lower bound on p_i
|
|
|
|
ModEvent me_plb = z[i].gq(home, start);
|
|
if (me_failed(me_plb)) {
|
|
return false;
|
|
}
|
|
nofix |= (me_modified(me_plb) && start != z[i].min());
|
|
}
|
|
|
|
ModEvent me_lb = x[i].gq(home, y[start].min());
|
|
if (me_failed(me_lb)) {
|
|
return false;
|
|
}
|
|
nofix |= (me_modified(me_lb) &&
|
|
y[start].min() != x[i].min());
|
|
|
|
int ptau = tau[xs - 1 - i];
|
|
int xmax = x[ptau].max();
|
|
/*
|
|
* take the scc-list for the current x node
|
|
* start from the rightmost reachable node and check which
|
|
* y node in the scc is
|
|
* really the rightmost node intersecting x, i.e.
|
|
* search for the smallest upper bound of x
|
|
*/
|
|
start = sinfo[scclist[ptau]].rightmost;
|
|
while (y[start].min() > xmax) {
|
|
start = sinfo[start].left;
|
|
}
|
|
|
|
if (Perm) {
|
|
//start is the rightmost-position for x_i
|
|
//that denotes the upper bound on p_i
|
|
ModEvent me_pub = z[ptau].lq(home, start);
|
|
if (me_failed(me_pub)) {
|
|
return false;
|
|
}
|
|
nofix |= (me_modified(me_pub) && start != z[ptau].max());
|
|
}
|
|
|
|
ModEvent me_ub = x[ptau].lq(home, y[start].max());
|
|
if (me_failed(me_ub)) {
|
|
return false;
|
|
}
|
|
nofix |= (me_modified(me_ub) &&
|
|
y[start].max() != x[ptau].max());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* \brief Narrowing the domains of the y views
|
|
*
|
|
* analogously to the x views we take
|
|
* - for the upper bounds the matching \f$\phi\f$ computed in glover
|
|
* and compute the new upper bound by \f$T_j=min(E_j, D_{\phi(j)})\f$
|
|
* - for the lower bounds the matching \f$\phi'\f$ computed in revglover
|
|
* and update the new lower bound by \f$T_j=max(E_j, D_{\phi'(j)})\f$
|
|
*/
|
|
|
|
template<class View>
|
|
inline bool
|
|
narrow_domy(Space& home,
|
|
ViewArray<View>& x, ViewArray<View>& y,
|
|
int phi[], int phiprime[], bool& nofix) {
|
|
for (int i=x.size(); i--; ) {
|
|
ModEvent me_lb = y[i].gq(home, x[phiprime[i]].min());
|
|
if (me_failed(me_lb)) {
|
|
return false;
|
|
}
|
|
nofix |= (me_modified(me_lb) &&
|
|
x[phiprime[i]].min() != y[i].min());
|
|
|
|
ModEvent me_ub = y[i].lq(home, x[phi[i]].max());
|
|
if (me_failed(me_ub)) {
|
|
return false;
|
|
}
|
|
nofix |= (me_modified(me_ub) &&
|
|
x[phi[i]].max() != y[i].max());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
}}}
|
|
|
|
// STATISTICS: int-prop
|
|
|