1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
on-restart-benchmarks/gecode/iter/ranges-scale.hpp
Jip J. Dekker 1d9faf38de Squashed 'software/gecode/' content from commit 313e8764
git-subtree-dir: software/gecode
git-subtree-split: 313e87646da4fc2752a70e83df16d993121a8e40
2021-06-16 14:02:33 +10:00

235 lines
6.1 KiB
C++

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Christian Schulte <schulte@gecode.org>
*
* Copyright:
* Christian Schulte, 2005
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <cmath>
namespace Gecode { namespace Iter { namespace Ranges {
/**
* \brief Range iterator for pointwise product with a positive integer
*
* Note that this iterator has a different interface as it can be used
* for both integer precision as well as double precision (depending
* on the type \a Val (\c int or \c double) and
* on the type \a UnsVal (\c unsigned \c int or \c double).
*
* \ingroup FuncIterRanges
*/
template<class Val, class UnsVal, class I>
class ScaleUp {
protected:
/// Iterator to be scaled
I i;
/// Scale-factor
int a;
/// Current value of range
Val cur;
/// Last value of scaled range of \a i
Val end;
public:
/// \name Constructors and initialization
//@{
/// Default constructor
ScaleUp(void);
/// Initialize with ranges from \a i and scale factor \a a
ScaleUp(I& i, int a);
/// Initialize with ranges from \a i and scale factor \a a
void init(I& i, int a);
//@}
/// \name Iteration control
//@{
/// Test whether iterator is still at a range or done
bool operator ()(void) const;
/// Move iterator to next range (if possible)
void operator ++(void);
//@}
/// \name Range access
//@{
/// Return smallest value of range
Val min(void) const;
/// Return largest value of range
Val max(void) const;
/// Return width of range (distance between minimum and maximum)
UnsVal width(void) const;
//@}
};
/**
* \brief Range iterator for pointwise division by a positive integer
*
* \ingroup FuncIterRanges
*/
template<class I>
class ScaleDown : public MinMax {
protected:
/// Iterator to be scaled down
I i;
/// Divide by this factor
int a;
public:
/// \name Constructors and initialization
//@{
/// Default constructor
ScaleDown(void);
/// Initialize with ranges from \a i and scale factor \a a
ScaleDown(I& i, int a);
/// Initialize with ranges from \a i and scale factor \a a
void init(I& i, int a);
//@}
/// \name Iteration control
//@{
/// Move iterator to next range (if possible)
void operator ++(void);
//@}
};
template<class Val, class UnsVal, class I>
forceinline
ScaleUp<Val,UnsVal,I>::ScaleUp(void) {}
template<class Val, class UnsVal, class I>
inline void
ScaleUp<Val,UnsVal,I>::init(I& i0, int a0) {
i = i0; a = a0;
if (i()) {
cur = static_cast<Val>(a) * static_cast<Val>(i.min());
end = static_cast<Val>(a) * static_cast<Val>(i.max());
} else {
cur = 1;
end = 0;
}
}
template<class Val, class UnsVal, class I>
inline
ScaleUp<Val,UnsVal,I>::ScaleUp(I& i0, int a0) : i(i0), a(a0) {
if (i()) {
cur = static_cast<Val>(a) * static_cast<Val>(i.min());
end = static_cast<Val>(a) * static_cast<Val>(i.max());
} else {
cur = 1;
end = 0;
}
}
template<class Val, class UnsVal, class I>
forceinline void
ScaleUp<Val,UnsVal,I>::operator ++(void) {
if (a == 1) {
++i;
} else {
cur += a;
if (cur > end) {
++i;
if (i()) {
cur = a * i.min();
end = a * i.max();
}
}
}
}
template<class Val, class UnsVal, class I>
forceinline bool
ScaleUp<Val,UnsVal,I>::operator ()(void) const {
return (a == 1) ? i() : (cur <= end);
}
template<class Val, class UnsVal, class I>
forceinline Val
ScaleUp<Val,UnsVal,I>::min(void) const {
return (a == 1) ? static_cast<Val>(i.min()) : cur;
}
template<class Val, class UnsVal, class I>
forceinline Val
ScaleUp<Val,UnsVal,I>::max(void) const {
return (a == 1) ? static_cast<Val>(i.max()) : cur;
}
template<class Val, class UnsVal, class I>
forceinline UnsVal
ScaleUp<Val,UnsVal,I>::width(void) const {
return (a == 1) ?
static_cast<UnsVal>(i.width()) :
static_cast<UnsVal>(1);
}
template<class I>
forceinline void
ScaleDown<I>::operator ++(void) {
finish();
while ((mi > ma) && i()) {
mi = static_cast<int>(ceil(static_cast<double>(i.min())/a));
ma = static_cast<int>(floor(static_cast<double>(i.max())/a));
++i;
}
while (i()) {
int n_mi = static_cast<int>(ceil(static_cast<double>(i.min())/a));
if (n_mi-ma > 1)
break;
int n_ma = static_cast<int>(floor(static_cast<double>(i.max())/a));
if (n_mi <= n_ma) {
ma = n_ma;
}
++i;
}
}
template<class I>
forceinline
ScaleDown<I>::ScaleDown(void) {}
template<class I>
inline void
ScaleDown<I>::init(I& i0, int a0) {
i = i0; a = a0;
operator ++();
}
template<class I>
inline
ScaleDown<I>::ScaleDown(I& i0, int a0) : i(i0), a(a0) {
i = i0; a = a0;
operator ++();
}
}}}
// STATISTICS: iter-any