29 lines
1.6 KiB
MiniZinc
29 lines
1.6 KiB
MiniZinc
predicate fzn_mdd_nondet(array[int] of var int: x, % variables constrained by MDD
|
|
int: N, % number of nodes root is node 1
|
|
array[int] of int: level, % level of each node root is level 1, T is level length(x)+1
|
|
int: E, % number of edges
|
|
array[int] of int: from, % edge leaving node 1..N
|
|
array[int] of set of int: label, % value of variable
|
|
array[int] of int: to % edge entering node 0..N where 0 = T node
|
|
) =
|
|
let { set of int: NODE = 1..N;
|
|
set of int: EDGE = 1..E;
|
|
int: L = length(x);
|
|
array[0..N] of var bool: bn;
|
|
array[EDGE] of var bool: be;
|
|
set of int: D = dom_array(x); } in
|
|
bn[0] /\ % true node is true
|
|
bn[1] /\ % root must hold
|
|
% T1 each node except the root enforces an outgoing edge
|
|
forall(n in NODE)(bn[n] -> exists(e in EDGE where from[e] = n)(be[e])) /\
|
|
% T23 each edge enforces its endpoints
|
|
forall(e in EDGE)((be[e] -> bn[from[e]]) /\ (be[e] -> bn[to[e]])) /\
|
|
% T4 each edge enforces its label
|
|
forall(e in EDGE)(be[e] -> x[level[from[e]]] in label[e]) /\
|
|
% P2 each node except the root enforces an incoming edge
|
|
exists(e in EDGE where to[e] = 0)(be[e]) /\
|
|
forall(n in 2..N)(bn[n] -> exists(e in EDGE where to[e] = n)(be[e])) /\
|
|
% P3 each label has a support
|
|
forall(i in 1..L, d in D)
|
|
(x[i] = d -> exists(e in EDGE where level[from[e]] = i /\ d in label[e])(be[e]));
|