git-subtree-dir: software/gecode_on_replay git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
169 lines
8.0 KiB
C++
169 lines
8.0 KiB
C++
/**** , [ network-pricing1.cpp ],
|
||
Copyright (c) 2008 Universite d'Orleans - Jeremie Vautard
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
of this software and associated documentation files (the "Software"), to deal
|
||
in the Software without restriction, including without limitation the rights
|
||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
copies of the Software, and to permit persons to whom the Software is
|
||
furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
THE SOFTWARE.
|
||
*************************************************************************/
|
||
|
||
#include <gecode/minimodel.hh>
|
||
#include <gecode/search.hh>
|
||
#include "QCOPPlus.hh"
|
||
#include "qsolver_qcop.hh"
|
||
#include <iostream>
|
||
|
||
using namespace std;
|
||
using namespace Gecode;
|
||
using namespace Gecode::Int;
|
||
|
||
void printStr(Strategy s,int depth) {
|
||
StrategyNode plop = s.getTag();
|
||
for (int glou=0;glou<depth;glou++) cout<<" ";
|
||
if (s.isTrue()) cout<<"TRUE"<<endl;
|
||
else if (s.isFalse()) cout<<"FALSE"<<endl;
|
||
else cout<<"type "<<plop.type<<" qt "<<plop.quantifier<<" vmin "<<plop.Vmin<<" vmax "<<plop.Vmax<<" scope "<<plop.scope<<" - ";
|
||
for (int i=0;i<s.getTag().valeurs.size();i++) cout<<s.getTag().valeurs[i]<<" ";
|
||
cout<<endl;
|
||
for (int glou=0;glou<depth;glou++) cout<<" ";
|
||
cout<<s.degree()<<" child(ren)"<<endl;
|
||
for (int i=0;i<s.degree();i++) {
|
||
for (int glou=0;glou<depth;glou++) cout<<" ";
|
||
cout<<"Child "<<i<<" : "<<endl;
|
||
printStr(s.getChild(i),depth+1);
|
||
}
|
||
}
|
||
/////////////////////////////////////////////////////////////////////////////////////////
|
||
// This is an instance of the Network Pricing Problem, taken from : //
|
||
// //
|
||
// Bouhtou, M., Grigoriev, A., van Hoesel, S., van der Kraaij, A.F., Spieksma, F.C., //
|
||
// Uetz, M.: Pricing bridges to cross a river. Naval Research Logistics 54(4) (2007) //
|
||
// 411<31>420 //
|
||
// //
|
||
// The problem is to set a tariff on some network links in a way that maximizes the //
|
||
// profit of the owner of the links. //
|
||
// Customer i wishes to transmit di amount of data from a source xi to a target yi. //
|
||
// Each path from a source to a target has to cross a tolled arc aj . On the way from //
|
||
// si to aj , the cost of the links owned by other providers is cij . It is assumed //
|
||
// that each customer i wishes to minimize the cost to route her data and that they can//
|
||
// always choose an other provider at a cost ui. The purpose of the problem is to //
|
||
// determine the cost tj to cross a tolled arc aj in order to maximize the revenue of //
|
||
// the telecom operator. //
|
||
// This instance has 5 links and 9 customers. The network operator may choose among 5 //
|
||
// tarifs for each link. //
|
||
/////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
int main() {
|
||
int NCustomer = 9;
|
||
int NArc = 5;
|
||
int*c = new int[NCustomer*NArc]; // [NArc*i+j] : Initial cost for client i to reach way j
|
||
int* d = new int[NCustomer]; // d[i] : amount of data client i wants to transmit
|
||
int* u = new int[NCustomer]; // u[i] : maximum cost client i will accept
|
||
int max = 19;
|
||
|
||
c[0*NArc+0]=5; c[0*NArc+1]=1; c[0*NArc+2]=8; c[0*NArc+3]=6; c[0*NArc+4]=6;
|
||
c[1*NArc+0]=2; c[1*NArc+1]=8; c[1*NArc+2]=6; c[1*NArc+3]=3; c[1*NArc+4]=1;
|
||
c[2*NArc+0]=0; c[2*NArc+1]=8; c[2*NArc+2]=0; c[2*NArc+3]=8; c[2*NArc+4]=6;
|
||
c[3*NArc+0]=2; c[3*NArc+1]=4; c[3*NArc+2]=7; c[3*NArc+3]=5; c[3*NArc+4]=8;
|
||
c[4*NArc+0]=8; c[4*NArc+1]=2; c[4*NArc+2]=4; c[4*NArc+3]=3; c[4*NArc+4]=4;
|
||
c[5*NArc+0]=5; c[5*NArc+1]=4; c[5*NArc+2]=6; c[5*NArc+3]=4; c[5*NArc+4]=1;
|
||
c[6*NArc+0]=5; c[6*NArc+1]=6; c[6*NArc+2]=7; c[6*NArc+3]=4; c[6*NArc+4]=8;
|
||
c[7*NArc+0]=5; c[7*NArc+1]=8; c[7*NArc+2]=1; c[7*NArc+3]=3; c[7*NArc+4]=6;
|
||
c[8*NArc+0]=7; c[8*NArc+1]=8; c[8*NArc+2]=8; c[8*NArc+3]=3; c[8*NArc+4]=5;
|
||
|
||
d[0]=7; d[1]=16; d[2]=16; d[3]=19; d[4]=18; d[5]=13; d[6]=8; d[7]=11; d[8]=18;
|
||
u[0]=122; u[1]=190; u[2]=113; u[3]=285; u[4]=247; u[5]=255; u[6]=143; u[7]=121; u[8]=139;
|
||
IntArgs carg(NCustomer*NArc,c); // Copy c in an IntArgs for further constraint posting
|
||
IntArgs darg(NCustomer,d); // Copy d in an IntArgs for further constraint posting
|
||
IntArgs uarg(NCustomer,u); // Copy u in an IntArgs for further constraint posting
|
||
|
||
bool q[] = {false,true,false};
|
||
int* nv = new int[3];
|
||
nv[0]=NArc;
|
||
nv[1]=1;
|
||
nv[2]=9;
|
||
|
||
Qcop problem(3,q,nv);
|
||
int postarfs[] = {3,7,11,15,19};
|
||
IntSet thePossibleTariffs(postarfs,5);
|
||
for (int i=0;i<NArc;i++)
|
||
problem.QIntVar(i,thePossibleTariffs); // tariff for way i
|
||
IntVarArgs branch1(NArc);
|
||
for (int i=0;i<NArc;i++)
|
||
branch1[i] = problem.var(i);
|
||
branch(*(problem.space()),branch1,INT_VAR_SIZE_MIN(),INT_VAL_MIN());
|
||
problem.nextScope();
|
||
|
||
problem.QIntVar(NArc,0,NCustomer-1); // k
|
||
IntVarArgs branch2(NArc+1);
|
||
for (int i=0;i<NArc+1;i++)
|
||
branch2[i] = problem.var(i);
|
||
branch(*(problem.space()),branch2,INT_VAR_SIZE_MIN(),INT_VAL_MIN());
|
||
problem.nextScope();
|
||
|
||
problem.QIntVar(NArc+1,0,NArc-1); // a
|
||
problem.QIntVar(NArc+2,0,1000000); // cost
|
||
problem.QIntVar(NArc+3,0,1000000); // Income
|
||
IntVar a(problem.var(NArc+1));
|
||
IntVar cost(problem.var(NArc+2));
|
||
IntVar income(problem.var(NArc+3));
|
||
problem.QIntVar(NArc+4,0,1000000);
|
||
problem.QIntVar(NArc+5,0,1000000);
|
||
problem.QIntVar(NArc+6,0,1000000);
|
||
problem.QIntVar(NArc+7,0,1000000);
|
||
problem.QIntVar(NArc+8,0,1000000);
|
||
problem.QIntVar(NArc+9,0,1000000);
|
||
IntVar aux1(problem.var(NArc+4)); // k* NArc + a
|
||
IntVar aux2(problem.var(NArc+5)); // c[k*Narc+a]
|
||
IntVar aux3(problem.var(NArc+6)); // t[a]
|
||
IntVar aux4(problem.var(NArc+7)); // d[k]
|
||
IntVar aux5(problem.var(NArc+8)); // c[]+t[]
|
||
IntVar aux6(problem.var(NArc+9)); // u[k]
|
||
IntVar k(problem.var(NArc));
|
||
rel(*(problem.space()), aux1 == ( NArc * k + a) );
|
||
element(*(problem.space()),carg,aux1,aux2);
|
||
IntVarArgs t(NArc);
|
||
for (int i=0;i<NArc;i++) t[i]=problem.var(i);
|
||
element(*(problem.space()),t,a,aux3);
|
||
element(*(problem.space()),darg,k,aux4);
|
||
rel(*(problem.space()), aux5 == aux2 + aux3);
|
||
mult(*(problem.space()),aux5,aux4,cost); // cost = aux5 * aux4
|
||
mult(*(problem.space()),aux3,aux4,income);
|
||
element(*(problem.space()),uarg,k,aux6);
|
||
rel(*(problem.space()),cost <= aux6);
|
||
|
||
IntVarArgs branch3(NArc+10);
|
||
for (int i=0;i<NArc+10;i++)
|
||
branch3[i] = problem.var(i);
|
||
branch(*(problem.space()),branch3,INT_VAR_SIZE_MIN(),INT_VAL_MIN());
|
||
|
||
OptVar* costopt = problem.getExistential(NArc+2);
|
||
OptVar* incomeopt = problem.getExistential(NArc+3);
|
||
problem.optimize(2,1,costopt); // at scope 2, we minimize (1) the variable cost
|
||
AggregatorSum somme;
|
||
OptVar* sumvar = problem.getAggregate(1,incomeopt,&somme);
|
||
problem.optimize(0,2,sumvar);
|
||
|
||
|
||
QCOP_solver sol(&problem);
|
||
unsigned long int nodes=0;
|
||
|
||
Strategy hihihi = sol.solve(nodes);
|
||
cout<<nodes<<" nodes encountered."<<endl;
|
||
printStr(hihihi,0);
|
||
return 0;
|
||
}
|