git-subtree-dir: software/gecode_on_replay git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
321 lines
9.9 KiB
C++
321 lines
9.9 KiB
C++
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Mikael Lagerkvist <lagerkvist@gecode.org>
|
|
*
|
|
* Copyright:
|
|
* Mikael Lagerkvist, 2009
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <gecode/driver.hh>
|
|
#include <gecode/int.hh>
|
|
#include <gecode/minimodel.hh>
|
|
|
|
using namespace Gecode;
|
|
|
|
/**
|
|
* \brief %Options for %EFPA problems
|
|
*
|
|
* \relates EFPA
|
|
*/
|
|
class EFPAOptions : public Options {
|
|
private:
|
|
Driver::UnsignedIntOption _v; ///< Parameter v
|
|
Driver::UnsignedIntOption _q; ///< Parameter q
|
|
Driver::UnsignedIntOption _l; ///< Parameter lambda
|
|
Driver::UnsignedIntOption _d; ///< Parameter d
|
|
Driver::StringOption _permutation; ///< Use permutation constraints if d=4
|
|
|
|
public:
|
|
/// Initialize options for example with name \a s
|
|
EFPAOptions(const char* s,
|
|
int v0 = 5, int q0 = 3, int lambda0 = 2, int d0 = 4)
|
|
: Options(s),
|
|
_v("v", "number of sequences", v0 ),
|
|
_q("q", "number of symbols", q0 ),
|
|
_l("l", "sets of symbols per sequence (lambda)", lambda0),
|
|
_d("d", "Hamming distance between sequences", d0 ),
|
|
_permutation("permutation", "use permutation constraints if d=4",
|
|
false)
|
|
{
|
|
// Add options
|
|
add(_d);
|
|
add(_l);
|
|
add(_q);
|
|
add(_v);
|
|
add(_permutation);
|
|
add(_symmetry);
|
|
|
|
// Add permutation options
|
|
_permutation.add(true, "full" );
|
|
_permutation.add(false, "none");
|
|
// Add symmetry options
|
|
_symmetry.add(true, "true" );
|
|
_symmetry.add(false, "false");
|
|
}
|
|
/// Parse options from arguments \a argv (number is \a argc)
|
|
void parse(int& argc, char* argv[]) {
|
|
Options::parse(argc,argv);
|
|
}
|
|
/// Get v, number of sequences
|
|
int v(void) const { return _v.value(); }
|
|
/// Get q, number of symbols
|
|
int q(void) const { return _q.value(); }
|
|
/// Get lambda, sets of symbols per sequence
|
|
int l(void) const { return _l.value(); }
|
|
/// Get d, Hamming distance between sequences
|
|
int d(void) const { return _d.value(); }
|
|
|
|
/// Whether to use permutation constraints. Only active if d=4
|
|
bool permutation(void) const { return d() == 4 && _permutation.value(); }
|
|
/// Whether to use symmetry breaking.
|
|
bool symmetry(void) const { return _symmetry.value(); }
|
|
};
|
|
|
|
|
|
/**
|
|
* \brief %Example: Equidistant Frequency Permutation Arrays
|
|
*
|
|
* This example solves instances of the equidistant frequency
|
|
* permutation arrays problem.
|
|
*
|
|
* The model of the problem is mostly taken from "Modelling
|
|
* Equidistant Frequency Permutation Arrays in Constraints", by Ian
|
|
* P. Gent, Paul McKay, Peter Nightingale, and Sophie Huczynska. It
|
|
* implements the non-Boolean model without SAC.
|
|
*
|
|
* \ingroup Example
|
|
*
|
|
*/
|
|
class EFPA : public Script {
|
|
protected:
|
|
int v; ///< Number of sequences
|
|
int q; ///< Number of symbols
|
|
int l; ///< Number of sets of symbols for a sequence (\f$\lambda\f$)
|
|
int d; ///< Hamming distance between any pair of sequences
|
|
int n; ///< Length of sequence (\f$q\cdot\lambda\f$)
|
|
int nseqpair; ///< Number of sequence pairs (\f$\frac{v(v-1)}{2}\f$)
|
|
IntVarArray c; ///< Variables for sequences
|
|
BoolVarArray diff; ///< Differences between sequences
|
|
|
|
public:
|
|
/// Actual model
|
|
EFPA(const EFPAOptions& opt)
|
|
: Script(opt),
|
|
v(opt.v()),
|
|
q(opt.q()),
|
|
l(opt.l()),
|
|
d(opt.d()),
|
|
n(q*l),
|
|
nseqpair((v*(v-1))/2),
|
|
c(*this, n*v, 1,q),
|
|
diff(*this, n*nseqpair, 0, 1)
|
|
{
|
|
// Matrix access
|
|
// q*lambda=n columns, and v rows
|
|
Matrix<IntVarArray> cm(c, n, v);
|
|
// q*lambda=n columns, and nseqpair rows
|
|
Matrix<BoolVarArray> diffm(diff, n, nseqpair);
|
|
|
|
// Counting symbols in rows
|
|
{
|
|
IntArgs values(q);
|
|
for (int i = q; i--; ) values[i] = i+1;
|
|
IntSet cardinality(l, l);
|
|
for (int i = v; i--; )
|
|
count(*this, cm.row(i), cardinality, values, opt.ipl());
|
|
}
|
|
|
|
// Difference variables
|
|
{
|
|
int nseqi = 0;
|
|
for (int a = 0; a < v; ++a) {
|
|
for (int b = a+1; b < v; ++b) {
|
|
for (int i = n; i--; ) {
|
|
rel(*this, cm(i, a), IRT_NQ, cm(i, b), diffm(i, nseqi));
|
|
}
|
|
++nseqi;
|
|
}
|
|
}
|
|
assert(nseqi == nseqpair);
|
|
}
|
|
|
|
// Counting the Hamming difference
|
|
{
|
|
for (int i = nseqpair; i--; ) {
|
|
linear(*this, diffm.row(i), IRT_EQ, d);
|
|
}
|
|
}
|
|
|
|
// Symmetry breaking
|
|
if (opt.symmetry()) {
|
|
IntRelType row_less = d==0 ? IRT_EQ : IRT_LE;
|
|
// order rows
|
|
for (int r = 0; r<v-1; ++r) {
|
|
rel(*this, cm.row(r), row_less, cm.row(r+1));
|
|
}
|
|
// order columns
|
|
for (int c = 0; c<n-1; ++c) {
|
|
rel(*this, cm.col(c), IRT_LQ, cm.col(c+1));
|
|
}
|
|
// Set first row according to symmetry breaking
|
|
int color = 1;
|
|
int ncolor = 0;
|
|
for (int c = 0; c < n; ++c) {
|
|
rel(*this, cm(c, 0), IRT_EQ, color);
|
|
if (++ncolor == l) {
|
|
ncolor = 0;
|
|
++color;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Permutation constraints
|
|
if (opt.permutation()) {
|
|
const int k[][4] = { // inverse indexing of the permutation
|
|
{0, 1, 3, 2}, // cform == 0, ((1, 2)(3, 4))
|
|
{1, 2, 3, 0}, // cform == 1, ((1, 2, 3, 4))
|
|
};
|
|
assert(d == 4);
|
|
// Constraint on each pair of rows
|
|
for (int r1 = 0; r1 < v; ++r1) {
|
|
for (int r2 = r1+1; r2 < v; ++r2) {
|
|
IntVarArgs row1 = cm.row(r1);
|
|
IntVarArgs row2 = cm.row(r2);
|
|
// Perm is the
|
|
IntVarArgs perm(d);
|
|
for (int i = d; i--; ) perm[i] = IntVar(*this, 0, n-1);
|
|
// cform is the cycle-form of the permutation
|
|
IntVar cform(*this, 0, 1);
|
|
BoolVar cformb = channel(*this, cform);
|
|
|
|
/* Permutation mapping*/
|
|
// Values from row1...
|
|
IntVarArgs _p(2*d);
|
|
for (int i = 2*d; i--; ) _p[i] = IntVar(*this, 1, q);
|
|
Matrix<IntVarArgs> p(_p, d, 2);
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < d; ++j) {
|
|
element(*this, row1, perm[k[i][j]], p(j, i));
|
|
}
|
|
}
|
|
|
|
// ...into values in row2
|
|
for (int i = 0; i < d; ++i) {
|
|
IntVar index(*this, 0, 2*d);
|
|
rel(*this, cform*d + i == index);
|
|
IntVar value(*this, 1, q);
|
|
element(*this, _p, index, value);
|
|
element(*this, row2, perm[i], value);
|
|
}
|
|
|
|
/* Rows r1 and r2 are equal at indices not in perm */
|
|
// uses Boolean representations pib for perm[i]
|
|
BoolVarArgs p1b(*this, n, 0, 1);
|
|
channel(*this, p1b, perm[0]);
|
|
BoolVarArgs p2b(*this, n, 0, 1);
|
|
channel(*this, p2b, perm[1]);
|
|
BoolVarArgs p3b(*this, n, 0, 1);
|
|
channel(*this, p3b, perm[2]);
|
|
BoolVarArgs p4b(*this, n, 0, 1);
|
|
channel(*this, p4b, perm[3]);
|
|
for (int i = n; i--; ) {
|
|
// No perm-variable uses i is equivalent to the reows
|
|
// being equal at i
|
|
rel(*this, (!p1b[i] && !p2b[i] && !p3b[i] && !p4b[i]) ==
|
|
(row1[i] == row2[i]));
|
|
}
|
|
|
|
/* Constraints for fixing the permutation */
|
|
// Common non-equality constraints - derangements
|
|
rel(*this, perm[0], IRT_NQ, perm[1]);
|
|
rel(*this, perm[2], IRT_NQ, perm[3]);
|
|
// Conditional non-equality constraints - derangment of cform 1
|
|
// Implements distinct(*this, perm, cformb);
|
|
rel(*this, perm[0], IRT_NQ, perm[2], cformb);
|
|
rel(*this, perm[0], IRT_NQ, perm[3], cformb);
|
|
rel(*this, perm[1], IRT_NQ, perm[2], cformb);
|
|
rel(*this, perm[1], IRT_NQ, perm[3], cformb);
|
|
// Common ordering-constraints - symmetry breaking
|
|
rel(*this, perm[0], IRT_LE, perm[1]);
|
|
rel(*this, perm[0], IRT_LE, perm[2]);
|
|
rel(*this, perm[0], IRT_LE, perm[3]);
|
|
// Conditional ordering constraint - symmetry breaking for cform 0
|
|
rel(*this, (!cformb) >> (perm[2] < perm[3]));
|
|
}
|
|
}
|
|
}
|
|
|
|
branch(*this, c, INT_VAR_NONE(), INT_VAL_MIN());
|
|
}
|
|
|
|
/// Print instance and solution
|
|
virtual void
|
|
print(std::ostream& os) const {
|
|
Matrix<IntVarArray> cm(c, n, v);
|
|
for (int i = 0; i < v; ++i) {
|
|
IntVarArgs r = cm.row(i);
|
|
os << r << std::endl;
|
|
}
|
|
os << std::endl;
|
|
}
|
|
|
|
/// Constructor for cloning \a s
|
|
EFPA(EFPA& s)
|
|
: Script(s),
|
|
v(s.v),
|
|
q(s.q),
|
|
l(s.l),
|
|
d(s.d),
|
|
n(s.n),
|
|
nseqpair(s.nseqpair)
|
|
{
|
|
c.update(*this, s.c);
|
|
diff.update(*this, s.diff);
|
|
}
|
|
/// Copy during cloning
|
|
virtual Space*
|
|
copy(void) {
|
|
return new EFPA(*this);
|
|
}
|
|
};
|
|
|
|
/** \brief Main-function
|
|
* \relates EFPA
|
|
*/
|
|
int
|
|
main(int argc, char* argv[]) {
|
|
EFPAOptions opt("Equidistant Frequency Permutation Arrays");
|
|
opt.ipl(IPL_DOM);
|
|
opt.parse(argc,argv);
|
|
|
|
Script::run<EFPA,DFS,EFPAOptions>(opt);
|
|
return 0;
|
|
}
|
|
|
|
// STATISTICS: example-any
|