git-subtree-dir: software/gecode_on_replay git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
605 lines
15 KiB
C++
605 lines
15 KiB
C++
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Patrick Pekczynski <pekczynski@ps.uni-sb.de>
|
|
*
|
|
* Contributing authors:
|
|
* Christian Schulte <schulte@gecode.org>
|
|
* Guido Tack <tack@gecode.org>
|
|
*
|
|
* Copyright:
|
|
* Patrick Pekczynski, 2004
|
|
* Christian Schulte, 2009
|
|
* Guido Tack, 2009
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
namespace Gecode { namespace Int { namespace GCC {
|
|
|
|
/**
|
|
* \defgroup GCCBndSup Support for GCC bounds propagation
|
|
*
|
|
* \ingroup FuncIntProp
|
|
*/
|
|
|
|
/**
|
|
* \brief Class for computing unreachable values in the value %GCC propagator
|
|
*
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
class UnReachable {
|
|
public:
|
|
/// Number of variables with lower bound
|
|
int minb;
|
|
/// Number of variables with upper bound
|
|
int maxb;
|
|
/// Number of equal variables
|
|
int eq;
|
|
/// Number of smaller variables
|
|
int le;
|
|
/// Number of greater variables
|
|
int gr;
|
|
};
|
|
|
|
/**
|
|
* \brief Bounds consistency check for cardinality variables.
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
|
|
template<class Card>
|
|
ExecStatus
|
|
prop_card(Space& home,
|
|
ViewArray<IntView>& x, ViewArray<Card>& k) {
|
|
int n = x.size();
|
|
int m = k.size();
|
|
Region r;
|
|
UnReachable* rv = r.alloc<UnReachable>(m);
|
|
for(int i = m; i--; )
|
|
rv[i].minb=rv[i].maxb=rv[i].le=rv[i].gr=rv[i].eq=0;
|
|
|
|
for (int i = n; i--; ) {
|
|
int min_idx;
|
|
if (!lookupValue(k,x[i].min(),min_idx))
|
|
return ES_FAILED;
|
|
if (x[i].assigned()) {
|
|
rv[min_idx].minb++;
|
|
rv[min_idx].maxb++;
|
|
rv[min_idx].eq++;
|
|
} else {
|
|
// count the number of variables
|
|
// with lower bound k[min_idx].card()
|
|
rv[min_idx].minb++;
|
|
int max_idx;
|
|
if (!lookupValue(k,x[i].max(),max_idx))
|
|
return ES_FAILED;
|
|
// count the number of variables
|
|
// with upper bound k[max_idx].card()
|
|
rv[max_idx].maxb++;
|
|
}
|
|
}
|
|
|
|
rv[0].le = 0;
|
|
int c_min = 0;
|
|
for (int i = 1; i < m; i++) {
|
|
rv[i].le = c_min + rv[i - 1].maxb;
|
|
c_min += rv[i - 1].maxb;
|
|
}
|
|
|
|
rv[m-1].gr = 0;
|
|
int c_max = 0;
|
|
for (int i = m-1; i--; ) {
|
|
rv[i].gr = c_max + rv[i + 1].minb;
|
|
c_max += rv[i + 1].minb;
|
|
}
|
|
|
|
for (int i = m; i--; ) {
|
|
int reachable = x.size() - rv[i].le - rv[i].gr;
|
|
if (!k[i].assigned()) {
|
|
GECODE_ME_CHECK(k[i].lq(home, reachable));
|
|
GECODE_ME_CHECK(k[i].gq(home, rv[i].eq));
|
|
} else {
|
|
// check validity of the cardinality value
|
|
if ((rv[i].eq > k[i].max()) || (k[i].max() > reachable))
|
|
return ES_FAILED;
|
|
}
|
|
}
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
|
|
/** \brief Consistency check, whether the cardinality values are feasible.
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
template<class Card>
|
|
forceinline bool
|
|
card_consistent(ViewArray<IntView>& x, ViewArray<Card>& k) {
|
|
int smin = 0;
|
|
int smax = 0;
|
|
for (int i = k.size(); i--; ) {
|
|
smax += k[i].max();
|
|
smin += k[i].min();
|
|
}
|
|
// Consistent if number of variables within cardinality bounds
|
|
return (smin <= x.size()) && (x.size() <= smax);
|
|
}
|
|
|
|
/**
|
|
* \brief Maps domain bounds to their position in hall[].bounds.
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
class Rank {
|
|
public:
|
|
/**
|
|
* \brief \f$ rank[i].min = z
|
|
* \Leftrightarrow min(x_i) = hall[z].bounds \f$
|
|
*/
|
|
int min;
|
|
/**
|
|
* \brief \f$ rank[i].max = z
|
|
* \Leftrightarrow max(x_i) = hall[z].bounds \f$
|
|
*/
|
|
int max;
|
|
};
|
|
|
|
/**
|
|
* \brief Compares two indices \a i, \a j of two views
|
|
* \a \f$ x_i \f$ \f$ x_j\f$ according to the
|
|
* ascending order of the views upper bounds
|
|
*
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
template<class View>
|
|
class MaxInc {
|
|
protected:
|
|
/// View array for comparison
|
|
ViewArray<View> x;
|
|
public:
|
|
/// Constructor
|
|
MaxInc(const ViewArray<View>& x0) : x(x0) {}
|
|
/// Order
|
|
forceinline bool
|
|
operator ()(const int i, const int j) {
|
|
return x[i].max() < x[j].max();
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* \brief Compares two indices \a i, \a j of two views
|
|
* \a \f$ x_i \f$ \f$ x_j\f$ according to the
|
|
* ascending order of the views lower bounds
|
|
*
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
template<class View>
|
|
class MinInc {
|
|
protected:
|
|
/// View array for comparison
|
|
ViewArray<View> x;
|
|
public:
|
|
/// Constructor
|
|
MinInc(const ViewArray<View>& x0) : x(x0) {}
|
|
/// Comparison
|
|
forceinline bool
|
|
operator ()(const int i, const int j) {
|
|
return x[i].min() < x[j].min();
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* \brief Compares two cardinality views
|
|
* \a \f$ x_i \f$ \f$ x_j\f$ according to the index
|
|
*
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
template<class Card>
|
|
class MinIdx {
|
|
public:
|
|
/// Comparison
|
|
forceinline bool
|
|
operator ()(const Card& x, const Card& y) {
|
|
return x.card() < y.card();
|
|
}
|
|
};
|
|
|
|
/**
|
|
* \brief Partial sum structure for constant
|
|
* time computation of the maximal capacity of an interval.
|
|
*
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
template<class Card>
|
|
class PartialSum {
|
|
private:
|
|
/// sum[i] contains the partial sum from 0 to i
|
|
int* sum;
|
|
/// the size of the sum
|
|
int size;
|
|
public:
|
|
/// Sentinels indicating whether an end of sum is reached
|
|
int firstValue, lastValue;
|
|
/// \name Initialization
|
|
//@{
|
|
/// Constructor
|
|
PartialSum(void);
|
|
/// Initialization
|
|
void init(Space& home, ViewArray<Card>& k, bool up);
|
|
/// Mark datstructure as requiring reinitialization
|
|
void reinit(void);
|
|
/// Test whether already initialized
|
|
operator bool(void) const;
|
|
//@}
|
|
/// \name Access
|
|
//@{
|
|
/// Compute the maximum capacity of an interval
|
|
int sumup(int from, int to) const;
|
|
/// Return smallest bound of variables
|
|
int minValue(void) const;
|
|
/// Return largest bound of variables
|
|
int maxValue(void) const;
|
|
/// Skip neigbouring array entries if their values do not differ
|
|
int skipNonNullElementsRight(int v) const;
|
|
/// Skip neigbouring array entries if their values do not differ
|
|
int skipNonNullElementsLeft(int v) const;
|
|
//@}
|
|
/// \name Update
|
|
//@{
|
|
/**
|
|
* \brief Check whether the values in the
|
|
* partial sum structure containting
|
|
* the lower cardinality bounds differ
|
|
* from the actual lower bounds of the
|
|
* cardinalities.
|
|
*/
|
|
bool check_update_min(ViewArray<Card>& k);
|
|
/**
|
|
* \brief Check whether the values in the
|
|
* partial sum structure containting
|
|
* the upper cardinality bounds differ
|
|
* from the actual upper bounds of the
|
|
* cardinalities.
|
|
*/
|
|
bool check_update_max(ViewArray<Card>& k);
|
|
//@}
|
|
};
|
|
|
|
|
|
template<class Card>
|
|
forceinline
|
|
PartialSum<Card>::PartialSum(void) : sum(nullptr), size(-1) {}
|
|
|
|
template<class Card>
|
|
forceinline
|
|
PartialSum<Card>::operator bool(void) const {
|
|
return size != -1;
|
|
}
|
|
template<class Card>
|
|
inline void
|
|
PartialSum<Card>::init(Space& home, ViewArray<Card>& elements, bool up) {
|
|
int i = 0;
|
|
int j = 0;
|
|
|
|
// Determine number of holes in the index set
|
|
int holes = 0;
|
|
for (i = 1; i < elements.size(); i++) {
|
|
if (elements[i].card() != elements[i-1].card() + 1)
|
|
holes += elements[i].card()-elements[i-1].card()-1;
|
|
}
|
|
|
|
// we add three elements at the beginning and two at the end
|
|
size = elements.size() + holes + 5;
|
|
|
|
// memory allocation
|
|
if (sum == nullptr) {
|
|
sum = home.alloc<int>(2*size);
|
|
}
|
|
int* ds = &sum[size];
|
|
|
|
int first = elements[0].card();
|
|
|
|
firstValue = first - 3;
|
|
lastValue = first + elements.size() + holes + 1;
|
|
|
|
// the first three elements
|
|
for (i = 3; i--; )
|
|
sum[i] = i;
|
|
|
|
/*
|
|
* copy the bounds into sum, filling up holes with zeroes
|
|
*/
|
|
int prevCard = elements[0].card()-1;
|
|
i = 0;
|
|
for (j = 2; j < elements.size() + holes + 2; j++) {
|
|
if (elements[i].card() != prevCard + 1) {
|
|
sum[j + 1] = sum[j];
|
|
} else if (up) {
|
|
sum[j + 1] = sum[j] + elements[i].max();
|
|
i++;
|
|
} else {
|
|
sum[j + 1] = sum[j] + elements[i].min();
|
|
i++;
|
|
}
|
|
prevCard++;
|
|
}
|
|
sum[j + 1] = sum[j] + 1;
|
|
sum[j + 2] = sum[j + 1] + 1;
|
|
|
|
// Compute distances, eliminating zeroes
|
|
i = elements.size() + holes + 3;
|
|
j = i + 1;
|
|
for ( ; i > 0; ) {
|
|
while(sum[i] == sum[i - 1]) {
|
|
ds[i] = j;
|
|
i--;
|
|
}
|
|
ds[j] = i;
|
|
i--;
|
|
j = ds[j];
|
|
}
|
|
ds[j] = 0;
|
|
ds[0] = 0;
|
|
}
|
|
|
|
template<class Card>
|
|
forceinline void
|
|
PartialSum<Card>::reinit(void) {
|
|
size = -1;
|
|
}
|
|
|
|
|
|
template<class Card>
|
|
forceinline int
|
|
PartialSum<Card>::sumup(int from, int to) const {
|
|
if (from <= to) {
|
|
return sum[to - firstValue] - sum[from - firstValue - 1];
|
|
} else {
|
|
assert(to - firstValue - 1 >= 0);
|
|
assert(to - firstValue - 1 < size);
|
|
assert(from - firstValue >= 0);
|
|
assert(from - firstValue < size);
|
|
return sum[to - firstValue - 1] - sum[from - firstValue];
|
|
}
|
|
}
|
|
|
|
template<class Card>
|
|
forceinline int
|
|
PartialSum<Card>::minValue(void) const {
|
|
return firstValue + 3;
|
|
}
|
|
template<class Card>
|
|
forceinline int
|
|
PartialSum<Card>::maxValue(void) const {
|
|
return lastValue - 2;
|
|
}
|
|
|
|
|
|
template<class Card>
|
|
forceinline int
|
|
PartialSum<Card>::skipNonNullElementsRight(int value) const {
|
|
value -= firstValue;
|
|
int* ds = &sum[size];
|
|
return (ds[value] < value ? value : ds[value]) + firstValue;
|
|
}
|
|
template<class Card>
|
|
forceinline int
|
|
PartialSum<Card>::skipNonNullElementsLeft(int value) const {
|
|
value -= firstValue;
|
|
int* ds = &sum[size];
|
|
return (ds[value] > value ? ds[ds[value]] : value) + firstValue;
|
|
}
|
|
|
|
template<class Card>
|
|
inline bool
|
|
PartialSum<Card>::check_update_max(ViewArray<Card>& k) {
|
|
int j = 0;
|
|
for (int i = 3; i < size - 2; i++) {
|
|
int max = 0;
|
|
if (k[j].card() == i+firstValue)
|
|
max = k[j++].max();
|
|
if ((sum[i] - sum[i - 1]) != max)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<class Card>
|
|
inline bool
|
|
PartialSum<Card>::check_update_min(ViewArray<Card>& k) {
|
|
int j = 0;
|
|
for (int i = 3; i < size - 2; i++) {
|
|
int min = 0;
|
|
if (k[j].card() == i+firstValue)
|
|
min = k[j++].min();
|
|
if ((sum[i] - sum[i - 1]) != min)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Container class provding information about the Hall
|
|
* structure of the problem variables.
|
|
*
|
|
* This class is used to
|
|
* keep the number of different arrays small, that is
|
|
* an array of type %HallInfo replaces integer arrays for each
|
|
* of the class members.
|
|
*
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
class HallInfo {
|
|
public:
|
|
/// Represents the union of all lower and upper domain bounds
|
|
int bounds;
|
|
/**
|
|
* \brief Critical capacity pointer
|
|
* \a t represents a predecessor function where \f$ t_i \f$ denotes the
|
|
* predecessor of i in bounds
|
|
*/
|
|
int t;
|
|
/**
|
|
* \brief Difference between critical capacities
|
|
*
|
|
* \a d_i is the difference between the capacities of hall[i].bounds
|
|
* and its predecessor in bounds hall[t[i]].bounds
|
|
*
|
|
*/
|
|
int d;
|
|
/**
|
|
* \brief Hall set pointer
|
|
*
|
|
* If hall[i].h < i then the half-open interval
|
|
* [hall[h[i]].bounds,hall[i].bounds) is containd in a Hall
|
|
* set.
|
|
* Otherwise holds a pointer to the Hall intervall it belongs to.
|
|
*/
|
|
int h;
|
|
/// Stable Set pointer
|
|
int s;
|
|
/// Potentially Stable Set pointer
|
|
int ps;
|
|
/**
|
|
* \brief Bound update
|
|
*
|
|
* \a newBound contains either a narrowed domain bound
|
|
* or is stores the old domain bound of a variable.
|
|
*/
|
|
int newBound;
|
|
};
|
|
|
|
|
|
/**
|
|
* \name Path compression
|
|
*
|
|
* Each of the nodes on the path from \a start to \a end
|
|
* becomes a direct child of \a to.
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
//@{
|
|
/// Path compression for potentially stable set structure
|
|
forceinline void
|
|
pathset_ps(HallInfo hall[], int start, int end, int to) {
|
|
int k, l;
|
|
for (l=start; (k=l) != end; hall[k].ps=to) {
|
|
l = hall[k].ps;
|
|
}
|
|
}
|
|
/// Path compression for stable set structure
|
|
forceinline void
|
|
pathset_s(HallInfo hall[], int start, int end, int to) {
|
|
int k, l;
|
|
for (l=start; (k=l) != end; hall[k].s=to) {
|
|
l = hall[k].s;
|
|
}
|
|
}
|
|
/// Path compression for capacity pointer structure
|
|
forceinline void
|
|
pathset_t(HallInfo hall[], int start, int end, int to) {
|
|
int k, l;
|
|
for (l=start; (k=l) != end; hall[k].t=to) {
|
|
l = hall[k].t;
|
|
}
|
|
}
|
|
/// Path compression for hall pointer structure
|
|
forceinline void
|
|
pathset_h(HallInfo hall[], int start, int end, int to) {
|
|
int k, l;
|
|
for (l=start; (k=l) != end; hall[k].h=to) {
|
|
l = hall[k].h;
|
|
assert(l != k);
|
|
}
|
|
}
|
|
//@}
|
|
|
|
/**
|
|
* \name Path minimum
|
|
*
|
|
* Returns the smalles reachable index starting from \a i.
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
//@{
|
|
/// Path minimum for hall pointer structure
|
|
forceinline int
|
|
pathmin_h(const HallInfo hall[], int i) {
|
|
while (hall[i].h < i)
|
|
i = hall[i].h;
|
|
return i;
|
|
}
|
|
/// Path minimum for capacity pointer structure
|
|
forceinline int
|
|
pathmin_t(const HallInfo hall[], int i) {
|
|
while (hall[i].t < i)
|
|
i = hall[i].t;
|
|
return i;
|
|
}
|
|
//@}
|
|
|
|
/**
|
|
* \name Path maximum
|
|
*
|
|
* Returns the greatest reachable index starting from \a i.
|
|
* \ingroup GCCBndSup
|
|
*/
|
|
//@{
|
|
/// Path maximum for hall pointer structure
|
|
forceinline int
|
|
pathmax_h(const HallInfo hall[], int i) {
|
|
while (hall[i].h > i)
|
|
i = hall[i].h;
|
|
return i;
|
|
}
|
|
/// Path maximum for capacity pointer structure
|
|
forceinline int
|
|
pathmax_t(const HallInfo hall[], int i) {
|
|
while (hall[i].t > i) {
|
|
i = hall[i].t;
|
|
}
|
|
return i;
|
|
}
|
|
/// Path maximum for stable set pointer structure
|
|
forceinline int
|
|
pathmax_s(const HallInfo hall[], int i) {
|
|
while (hall[i].s > i)
|
|
i = hall[i].s;
|
|
return i;
|
|
}
|
|
/// Path maximum for potentially stable set pointer structure
|
|
forceinline int
|
|
pathmax_ps(const HallInfo hall[], int i) {
|
|
while (hall[i].ps > i)
|
|
i = hall[i].ps;
|
|
return i;
|
|
}
|
|
//@}
|
|
|
|
}}}
|
|
|
|
// STATISTICS: int-prop
|
|
|