1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
Jip J. Dekker 981be2067e Squashed 'software/gecode_on_replay/' content from commit 8051d92b9
git-subtree-dir: software/gecode_on_replay
git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
2021-06-16 14:04:29 +10:00

605 lines
15 KiB
C++

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Patrick Pekczynski <pekczynski@ps.uni-sb.de>
*
* Contributing authors:
* Christian Schulte <schulte@gecode.org>
* Guido Tack <tack@gecode.org>
*
* Copyright:
* Patrick Pekczynski, 2004
* Christian Schulte, 2009
* Guido Tack, 2009
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
namespace Gecode { namespace Int { namespace GCC {
/**
* \defgroup GCCBndSup Support for GCC bounds propagation
*
* \ingroup FuncIntProp
*/
/**
* \brief Class for computing unreachable values in the value %GCC propagator
*
* \ingroup GCCBndSup
*/
class UnReachable {
public:
/// Number of variables with lower bound
int minb;
/// Number of variables with upper bound
int maxb;
/// Number of equal variables
int eq;
/// Number of smaller variables
int le;
/// Number of greater variables
int gr;
};
/**
* \brief Bounds consistency check for cardinality variables.
* \ingroup GCCBndSup
*/
template<class Card>
ExecStatus
prop_card(Space& home,
ViewArray<IntView>& x, ViewArray<Card>& k) {
int n = x.size();
int m = k.size();
Region r;
UnReachable* rv = r.alloc<UnReachable>(m);
for(int i = m; i--; )
rv[i].minb=rv[i].maxb=rv[i].le=rv[i].gr=rv[i].eq=0;
for (int i = n; i--; ) {
int min_idx;
if (!lookupValue(k,x[i].min(),min_idx))
return ES_FAILED;
if (x[i].assigned()) {
rv[min_idx].minb++;
rv[min_idx].maxb++;
rv[min_idx].eq++;
} else {
// count the number of variables
// with lower bound k[min_idx].card()
rv[min_idx].minb++;
int max_idx;
if (!lookupValue(k,x[i].max(),max_idx))
return ES_FAILED;
// count the number of variables
// with upper bound k[max_idx].card()
rv[max_idx].maxb++;
}
}
rv[0].le = 0;
int c_min = 0;
for (int i = 1; i < m; i++) {
rv[i].le = c_min + rv[i - 1].maxb;
c_min += rv[i - 1].maxb;
}
rv[m-1].gr = 0;
int c_max = 0;
for (int i = m-1; i--; ) {
rv[i].gr = c_max + rv[i + 1].minb;
c_max += rv[i + 1].minb;
}
for (int i = m; i--; ) {
int reachable = x.size() - rv[i].le - rv[i].gr;
if (!k[i].assigned()) {
GECODE_ME_CHECK(k[i].lq(home, reachable));
GECODE_ME_CHECK(k[i].gq(home, rv[i].eq));
} else {
// check validity of the cardinality value
if ((rv[i].eq > k[i].max()) || (k[i].max() > reachable))
return ES_FAILED;
}
}
return ES_OK;
}
/** \brief Consistency check, whether the cardinality values are feasible.
* \ingroup GCCBndSup
*/
template<class Card>
forceinline bool
card_consistent(ViewArray<IntView>& x, ViewArray<Card>& k) {
int smin = 0;
int smax = 0;
for (int i = k.size(); i--; ) {
smax += k[i].max();
smin += k[i].min();
}
// Consistent if number of variables within cardinality bounds
return (smin <= x.size()) && (x.size() <= smax);
}
/**
* \brief Maps domain bounds to their position in hall[].bounds.
* \ingroup GCCBndSup
*/
class Rank {
public:
/**
* \brief \f$ rank[i].min = z
* \Leftrightarrow min(x_i) = hall[z].bounds \f$
*/
int min;
/**
* \brief \f$ rank[i].max = z
* \Leftrightarrow max(x_i) = hall[z].bounds \f$
*/
int max;
};
/**
* \brief Compares two indices \a i, \a j of two views
* \a \f$ x_i \f$ \f$ x_j\f$ according to the
* ascending order of the views upper bounds
*
* \ingroup GCCBndSup
*/
template<class View>
class MaxInc {
protected:
/// View array for comparison
ViewArray<View> x;
public:
/// Constructor
MaxInc(const ViewArray<View>& x0) : x(x0) {}
/// Order
forceinline bool
operator ()(const int i, const int j) {
return x[i].max() < x[j].max();
}
};
/**
* \brief Compares two indices \a i, \a j of two views
* \a \f$ x_i \f$ \f$ x_j\f$ according to the
* ascending order of the views lower bounds
*
* \ingroup GCCBndSup
*/
template<class View>
class MinInc {
protected:
/// View array for comparison
ViewArray<View> x;
public:
/// Constructor
MinInc(const ViewArray<View>& x0) : x(x0) {}
/// Comparison
forceinline bool
operator ()(const int i, const int j) {
return x[i].min() < x[j].min();
}
};
/**
* \brief Compares two cardinality views
* \a \f$ x_i \f$ \f$ x_j\f$ according to the index
*
* \ingroup GCCBndSup
*/
template<class Card>
class MinIdx {
public:
/// Comparison
forceinline bool
operator ()(const Card& x, const Card& y) {
return x.card() < y.card();
}
};
/**
* \brief Partial sum structure for constant
* time computation of the maximal capacity of an interval.
*
* \ingroup GCCBndSup
*/
template<class Card>
class PartialSum {
private:
/// sum[i] contains the partial sum from 0 to i
int* sum;
/// the size of the sum
int size;
public:
/// Sentinels indicating whether an end of sum is reached
int firstValue, lastValue;
/// \name Initialization
//@{
/// Constructor
PartialSum(void);
/// Initialization
void init(Space& home, ViewArray<Card>& k, bool up);
/// Mark datstructure as requiring reinitialization
void reinit(void);
/// Test whether already initialized
operator bool(void) const;
//@}
/// \name Access
//@{
/// Compute the maximum capacity of an interval
int sumup(int from, int to) const;
/// Return smallest bound of variables
int minValue(void) const;
/// Return largest bound of variables
int maxValue(void) const;
/// Skip neigbouring array entries if their values do not differ
int skipNonNullElementsRight(int v) const;
/// Skip neigbouring array entries if their values do not differ
int skipNonNullElementsLeft(int v) const;
//@}
/// \name Update
//@{
/**
* \brief Check whether the values in the
* partial sum structure containting
* the lower cardinality bounds differ
* from the actual lower bounds of the
* cardinalities.
*/
bool check_update_min(ViewArray<Card>& k);
/**
* \brief Check whether the values in the
* partial sum structure containting
* the upper cardinality bounds differ
* from the actual upper bounds of the
* cardinalities.
*/
bool check_update_max(ViewArray<Card>& k);
//@}
};
template<class Card>
forceinline
PartialSum<Card>::PartialSum(void) : sum(nullptr), size(-1) {}
template<class Card>
forceinline
PartialSum<Card>::operator bool(void) const {
return size != -1;
}
template<class Card>
inline void
PartialSum<Card>::init(Space& home, ViewArray<Card>& elements, bool up) {
int i = 0;
int j = 0;
// Determine number of holes in the index set
int holes = 0;
for (i = 1; i < elements.size(); i++) {
if (elements[i].card() != elements[i-1].card() + 1)
holes += elements[i].card()-elements[i-1].card()-1;
}
// we add three elements at the beginning and two at the end
size = elements.size() + holes + 5;
// memory allocation
if (sum == nullptr) {
sum = home.alloc<int>(2*size);
}
int* ds = &sum[size];
int first = elements[0].card();
firstValue = first - 3;
lastValue = first + elements.size() + holes + 1;
// the first three elements
for (i = 3; i--; )
sum[i] = i;
/*
* copy the bounds into sum, filling up holes with zeroes
*/
int prevCard = elements[0].card()-1;
i = 0;
for (j = 2; j < elements.size() + holes + 2; j++) {
if (elements[i].card() != prevCard + 1) {
sum[j + 1] = sum[j];
} else if (up) {
sum[j + 1] = sum[j] + elements[i].max();
i++;
} else {
sum[j + 1] = sum[j] + elements[i].min();
i++;
}
prevCard++;
}
sum[j + 1] = sum[j] + 1;
sum[j + 2] = sum[j + 1] + 1;
// Compute distances, eliminating zeroes
i = elements.size() + holes + 3;
j = i + 1;
for ( ; i > 0; ) {
while(sum[i] == sum[i - 1]) {
ds[i] = j;
i--;
}
ds[j] = i;
i--;
j = ds[j];
}
ds[j] = 0;
ds[0] = 0;
}
template<class Card>
forceinline void
PartialSum<Card>::reinit(void) {
size = -1;
}
template<class Card>
forceinline int
PartialSum<Card>::sumup(int from, int to) const {
if (from <= to) {
return sum[to - firstValue] - sum[from - firstValue - 1];
} else {
assert(to - firstValue - 1 >= 0);
assert(to - firstValue - 1 < size);
assert(from - firstValue >= 0);
assert(from - firstValue < size);
return sum[to - firstValue - 1] - sum[from - firstValue];
}
}
template<class Card>
forceinline int
PartialSum<Card>::minValue(void) const {
return firstValue + 3;
}
template<class Card>
forceinline int
PartialSum<Card>::maxValue(void) const {
return lastValue - 2;
}
template<class Card>
forceinline int
PartialSum<Card>::skipNonNullElementsRight(int value) const {
value -= firstValue;
int* ds = &sum[size];
return (ds[value] < value ? value : ds[value]) + firstValue;
}
template<class Card>
forceinline int
PartialSum<Card>::skipNonNullElementsLeft(int value) const {
value -= firstValue;
int* ds = &sum[size];
return (ds[value] > value ? ds[ds[value]] : value) + firstValue;
}
template<class Card>
inline bool
PartialSum<Card>::check_update_max(ViewArray<Card>& k) {
int j = 0;
for (int i = 3; i < size - 2; i++) {
int max = 0;
if (k[j].card() == i+firstValue)
max = k[j++].max();
if ((sum[i] - sum[i - 1]) != max)
return true;
}
return false;
}
template<class Card>
inline bool
PartialSum<Card>::check_update_min(ViewArray<Card>& k) {
int j = 0;
for (int i = 3; i < size - 2; i++) {
int min = 0;
if (k[j].card() == i+firstValue)
min = k[j++].min();
if ((sum[i] - sum[i - 1]) != min)
return true;
}
return false;
}
/**
* \brief Container class provding information about the Hall
* structure of the problem variables.
*
* This class is used to
* keep the number of different arrays small, that is
* an array of type %HallInfo replaces integer arrays for each
* of the class members.
*
* \ingroup GCCBndSup
*/
class HallInfo {
public:
/// Represents the union of all lower and upper domain bounds
int bounds;
/**
* \brief Critical capacity pointer
* \a t represents a predecessor function where \f$ t_i \f$ denotes the
* predecessor of i in bounds
*/
int t;
/**
* \brief Difference between critical capacities
*
* \a d_i is the difference between the capacities of hall[i].bounds
* and its predecessor in bounds hall[t[i]].bounds
*
*/
int d;
/**
* \brief Hall set pointer
*
* If hall[i].h < i then the half-open interval
* [hall[h[i]].bounds,hall[i].bounds) is containd in a Hall
* set.
* Otherwise holds a pointer to the Hall intervall it belongs to.
*/
int h;
/// Stable Set pointer
int s;
/// Potentially Stable Set pointer
int ps;
/**
* \brief Bound update
*
* \a newBound contains either a narrowed domain bound
* or is stores the old domain bound of a variable.
*/
int newBound;
};
/**
* \name Path compression
*
* Each of the nodes on the path from \a start to \a end
* becomes a direct child of \a to.
* \ingroup GCCBndSup
*/
//@{
/// Path compression for potentially stable set structure
forceinline void
pathset_ps(HallInfo hall[], int start, int end, int to) {
int k, l;
for (l=start; (k=l) != end; hall[k].ps=to) {
l = hall[k].ps;
}
}
/// Path compression for stable set structure
forceinline void
pathset_s(HallInfo hall[], int start, int end, int to) {
int k, l;
for (l=start; (k=l) != end; hall[k].s=to) {
l = hall[k].s;
}
}
/// Path compression for capacity pointer structure
forceinline void
pathset_t(HallInfo hall[], int start, int end, int to) {
int k, l;
for (l=start; (k=l) != end; hall[k].t=to) {
l = hall[k].t;
}
}
/// Path compression for hall pointer structure
forceinline void
pathset_h(HallInfo hall[], int start, int end, int to) {
int k, l;
for (l=start; (k=l) != end; hall[k].h=to) {
l = hall[k].h;
assert(l != k);
}
}
//@}
/**
* \name Path minimum
*
* Returns the smalles reachable index starting from \a i.
* \ingroup GCCBndSup
*/
//@{
/// Path minimum for hall pointer structure
forceinline int
pathmin_h(const HallInfo hall[], int i) {
while (hall[i].h < i)
i = hall[i].h;
return i;
}
/// Path minimum for capacity pointer structure
forceinline int
pathmin_t(const HallInfo hall[], int i) {
while (hall[i].t < i)
i = hall[i].t;
return i;
}
//@}
/**
* \name Path maximum
*
* Returns the greatest reachable index starting from \a i.
* \ingroup GCCBndSup
*/
//@{
/// Path maximum for hall pointer structure
forceinline int
pathmax_h(const HallInfo hall[], int i) {
while (hall[i].h > i)
i = hall[i].h;
return i;
}
/// Path maximum for capacity pointer structure
forceinline int
pathmax_t(const HallInfo hall[], int i) {
while (hall[i].t > i) {
i = hall[i].t;
}
return i;
}
/// Path maximum for stable set pointer structure
forceinline int
pathmax_s(const HallInfo hall[], int i) {
while (hall[i].s > i)
i = hall[i].s;
return i;
}
/// Path maximum for potentially stable set pointer structure
forceinline int
pathmax_ps(const HallInfo hall[], int i) {
while (hall[i].ps > i)
i = hall[i].ps;
return i;
}
//@}
}}}
// STATISTICS: int-prop