git-subtree-dir: software/gecode_on_replay git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
319 lines
9.6 KiB
C++
319 lines
9.6 KiB
C++
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Patrick Pekczynski <pekczynski@ps.uni-sb.de>
|
|
*
|
|
* Contributing authors:
|
|
* Christian Schulte <schulte@gecode.org>
|
|
* Guido Tack <tack@gecode.org>
|
|
*
|
|
* Copyright:
|
|
* Patrick Pekczynski, 2004
|
|
* Christian Schulte, 2009
|
|
* Guido Tack, 2009
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
namespace Gecode { namespace Int { namespace GCC {
|
|
|
|
/*
|
|
* Analogously to "gcc/bnd.hpp" we split the algorithm
|
|
* in two parts:
|
|
* 1) the UBC (Upper Bound Constraint) stating that there are
|
|
* at most k[i].max() occurences of the value v_i
|
|
* 2) the LBC (Lower Bound Constraint) stating that there are
|
|
* at least k[i].min() occurences of the value v_i
|
|
*
|
|
* The algorithm proceeds in 5 STEPS:
|
|
*
|
|
* STEP 1:
|
|
* Build the bipartite value-graph G=(<X,D>,E),
|
|
* with X = all variable nodes (each variable forms a node)
|
|
* D = all value nodes (union over all domains of the variables)
|
|
* and (x_i,v) is an edge in G iff value v is in the domain D_i of x_i
|
|
*
|
|
* STEP 2: Compute a matching in the value graph.
|
|
* STEP 3: Compute all even alternating paths from unmatched nodes
|
|
* STEP 4: Compute strongly connected components in the merged graph
|
|
* STEP 5: Update the Domains according to the computed edges
|
|
*
|
|
*/
|
|
|
|
template<class Card>
|
|
inline
|
|
Dom<Card>::Dom(Home home, ViewArray<IntView>& x0,
|
|
ViewArray<Card>& k0, bool cf)
|
|
: Propagator(home), x(x0), y(home, x0),
|
|
k(k0), vvg(nullptr), card_fixed(cf){
|
|
// y is used for bounds propagation since prop_bnd needs all variables
|
|
// values within the domain bounds
|
|
x.subscribe(home, *this, PC_INT_DOM);
|
|
k.subscribe(home, *this, PC_INT_DOM);
|
|
}
|
|
|
|
template<class Card>
|
|
forceinline
|
|
Dom<Card>::Dom(Space& home, Dom<Card>& p)
|
|
: Propagator(home, p), vvg(nullptr), card_fixed(p.card_fixed) {
|
|
x.update(home, p.x);
|
|
y.update(home, p.y);
|
|
k.update(home, p.k);
|
|
}
|
|
|
|
template<class Card>
|
|
forceinline size_t
|
|
Dom<Card>::dispose(Space& home) {
|
|
x.cancel(home,*this, PC_INT_DOM);
|
|
k.cancel(home,*this, PC_INT_DOM);
|
|
(void) Propagator::dispose(home);
|
|
return sizeof(*this);
|
|
}
|
|
|
|
template<class Card>
|
|
Actor*
|
|
Dom<Card>::copy(Space& home) {
|
|
return new (home) Dom<Card>(home, *this);
|
|
}
|
|
|
|
template<class Card>
|
|
PropCost
|
|
Dom<Card>::cost(const Space&, const ModEventDelta&) const {
|
|
return PropCost::cubic(PropCost::LO, x.size());
|
|
}
|
|
|
|
template<class Card>
|
|
void
|
|
Dom<Card>::reschedule(Space& home) {
|
|
x.reschedule(home, *this, PC_INT_DOM);
|
|
k.reschedule(home, *this, PC_INT_DOM);
|
|
}
|
|
|
|
template<class Card>
|
|
ExecStatus
|
|
Dom<Card>::propagate(Space& home, const ModEventDelta&) {
|
|
Region r;
|
|
|
|
int* count = r.alloc<int>(k.size());
|
|
for (int i = k.size(); i--; )
|
|
count[i] = 0;
|
|
|
|
// total number of assigned views
|
|
int noa = 0;
|
|
for (int i = y.size(); i--; )
|
|
if (y[i].assigned()) {
|
|
noa++;
|
|
int idx;
|
|
if (!lookupValue(k,y[i].val(),idx))
|
|
return ES_FAILED;
|
|
count[idx]++;
|
|
if (Card::propagate && (k[idx].max() == 0))
|
|
return ES_FAILED;
|
|
}
|
|
|
|
if (noa == y.size()) {
|
|
// All views are assigned
|
|
for (int i = k.size(); i--; ) {
|
|
if ((k[i].min() > count[i]) || (count[i] > k[i].max()))
|
|
return ES_FAILED;
|
|
// the solution contains ci occurences of value k[i].card();
|
|
if (Card::propagate)
|
|
GECODE_ME_CHECK(k[i].eq(home, count[i]));
|
|
}
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
|
|
// before propagation performs inferences on cardinality variables:
|
|
if (Card::propagate) {
|
|
if (noa > 0)
|
|
for (int i = k.size(); i--; )
|
|
if (!k[i].assigned()) {
|
|
GECODE_ME_CHECK(k[i].lq(home, y.size() - (noa - count[i])));
|
|
GECODE_ME_CHECK(k[i].gq(home, count[i]));
|
|
}
|
|
|
|
GECODE_ES_CHECK(prop_card<Card>(home,y,k));
|
|
if (!card_consistent<Card>(y,k))
|
|
return ES_FAILED;
|
|
}
|
|
|
|
if (x.size() == 0) {
|
|
for (int j = k.size(); j--; )
|
|
if ((k[j].min() > k[j].counter()) || (k[j].max() < k[j].counter()))
|
|
return ES_FAILED;
|
|
return home.ES_SUBSUMED(*this);
|
|
} else if ((x.size() == 1) && (x[0].assigned())) {
|
|
int idx;
|
|
if (!lookupValue(k,x[0].val(),idx))
|
|
return ES_FAILED;
|
|
GECODE_ME_CHECK(k[idx].inc());
|
|
for (int j = k.size(); j--; )
|
|
if ((k[j].min() > k[j].counter()) || (k[j].max() < k[j].counter()))
|
|
return ES_FAILED;
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
|
|
if (vvg == nullptr) {
|
|
int smin = 0;
|
|
int smax = 0;
|
|
for (int i=k.size(); i--; )
|
|
if (k[i].counter() > k[i].max() ) {
|
|
return ES_FAILED;
|
|
} else {
|
|
smax += (k[i].max() - k[i].counter());
|
|
if (k[i].counter() < k[i].min())
|
|
smin += (k[i].min() - k[i].counter());
|
|
}
|
|
|
|
if ((x.size() < smin) || (smax < x.size()))
|
|
return ES_FAILED;
|
|
|
|
vvg = new (home) VarValGraph<Card>(home, x, k, smin, smax);
|
|
GECODE_ES_CHECK(vvg->min_require(home,x,k));
|
|
GECODE_ES_CHECK(vvg->template maximum_matching<UBC>());
|
|
if (!card_fixed)
|
|
GECODE_ES_CHECK(vvg->template maximum_matching<LBC>());
|
|
} else {
|
|
GECODE_ES_CHECK(vvg->sync(x,k));
|
|
}
|
|
|
|
vvg->template free_alternating_paths<UBC>();
|
|
vvg->template strongly_connected_components<UBC>();
|
|
|
|
GECODE_ES_CHECK(vvg->template narrow<UBC>(home,x,k));
|
|
|
|
if (!card_fixed) {
|
|
if (Card::propagate)
|
|
GECODE_ES_CHECK(vvg->sync(x,k));
|
|
|
|
vvg->template free_alternating_paths<LBC>();
|
|
vvg->template strongly_connected_components<LBC>();
|
|
|
|
GECODE_ES_CHECK(vvg->template narrow<LBC>(home,x,k));
|
|
}
|
|
|
|
{
|
|
bool card_assigned = true;
|
|
if (Card::propagate) {
|
|
GECODE_ES_CHECK(prop_card<Card>(home, y, k));
|
|
card_assigned = k.assigned();
|
|
}
|
|
|
|
if (card_assigned) {
|
|
if (x.size() == 0) {
|
|
for (int j=k.size(); j--; )
|
|
if ((k[j].min() > k[j].counter()) ||
|
|
(k[j].max() < k[j].counter()))
|
|
return ES_FAILED;
|
|
return home.ES_SUBSUMED(*this);
|
|
} else if ((x.size() == 1) && x[0].assigned()) {
|
|
int idx;
|
|
if (!lookupValue(k,x[0].val(),idx))
|
|
return ES_FAILED;
|
|
GECODE_ME_CHECK(k[idx].inc());
|
|
|
|
for (int j = k.size(); j--; )
|
|
if ((k[j].min() > k[j].counter()) ||
|
|
(k[j].max() < k[j].counter()))
|
|
return ES_FAILED;
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = k.size(); i--; )
|
|
count[i] = 0;
|
|
|
|
bool all_assigned = true;
|
|
// total number of assigned views
|
|
for (int i = y.size(); i--; )
|
|
if (y[i].assigned()) {
|
|
int idx;
|
|
if (!lookupValue(k,y[i].val(),idx))
|
|
return ES_FAILED;
|
|
count[idx]++;
|
|
if (Card::propagate && (k[idx].max() == 0))
|
|
return ES_FAILED;
|
|
} else {
|
|
all_assigned = false;
|
|
}
|
|
|
|
if (Card::propagate)
|
|
GECODE_ES_CHECK(prop_card<Card>(home, y, k));
|
|
|
|
if (all_assigned) {
|
|
for (int i = k.size(); i--; ) {
|
|
if ((k[i].min() > count[i]) || (count[i] > k[i].max()))
|
|
return ES_FAILED;
|
|
// the solution contains count[i] occurences of value k[i].card();
|
|
if (Card::propagate)
|
|
GECODE_ME_CHECK(k[i].eq(home,count[i]));
|
|
}
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
|
|
if (Card::propagate) {
|
|
int ysmax = y.size();
|
|
for (int i=k.size(); i--; )
|
|
ysmax -= k[i].max();
|
|
int smax = 0;
|
|
bool card_ass = true;
|
|
for (int i = k.size(); i--; ) {
|
|
GECODE_ME_CHECK(k[i].gq(home, ysmax + k[i].max()));
|
|
smax += k[i].max();
|
|
GECODE_ME_CHECK(k[i].lq(home, y.size() + k[i].min()));
|
|
if (!k[i].assigned())
|
|
card_ass = false;
|
|
}
|
|
if (card_ass && (smax != y.size()))
|
|
return ES_FAILED;
|
|
}
|
|
|
|
return Card::propagate ? ES_NOFIX : ES_FIX;
|
|
}
|
|
|
|
template<class Card>
|
|
inline ExecStatus
|
|
Dom<Card>::post(Home home,
|
|
ViewArray<IntView>& x, ViewArray<Card>& k) {
|
|
GECODE_ES_CHECK((postSideConstraints<Card>(home,x,k)));
|
|
|
|
if (isDistinct<Card>(x,k))
|
|
return Distinct::Dom<IntView>::post(home,x);
|
|
|
|
bool cardfix = true;
|
|
for (int i = k.size(); i--; )
|
|
if (!k[i].assigned()) {
|
|
cardfix = false; break;
|
|
}
|
|
|
|
(void) new (home) Dom<Card>(home,x,k,cardfix);
|
|
return ES_OK;
|
|
}
|
|
|
|
}}}
|
|
|
|
// STATISTICS: int-prop
|