1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
Jip J. Dekker 981be2067e Squashed 'software/gecode_on_replay/' content from commit 8051d92b9
git-subtree-dir: software/gecode_on_replay
git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
2021-06-16 14:04:29 +10:00

892 lines
25 KiB
C++
Executable File

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Christian Schulte <schulte@gecode.org>
*
* Copyright:
* Christian Schulte, 2003
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/int/linear/int-noview.hpp>
namespace Gecode { namespace Int { namespace Linear {
/**
* \brief Test if only unit-coefficient arrays used
*
*/
template<class P, class N>
forceinline bool
isunit(ViewArray<P>&, ViewArray<N>&) { return false; }
template<>
forceinline bool
isunit(ViewArray<IntView>&, ViewArray<IntView>&) { return true; }
template<>
forceinline bool
isunit(ViewArray<IntView>&, ViewArray<NoView>&) { return true; }
template<>
forceinline bool
isunit(ViewArray<NoView>&, ViewArray<IntView>&) { return true; }
/*
* Linear propagators
*
*/
template<class Val, class P, class N, PropCond pc>
forceinline
Lin<Val,P,N,pc>::Lin(Home home, ViewArray<P>& x0, ViewArray<N>& y0, Val c0)
: Propagator(home), x(x0), y(y0), c(c0) {
x.subscribe(home,*this,pc);
y.subscribe(home,*this,pc);
}
template<class Val, class P, class N, PropCond pc>
forceinline
Lin<Val,P,N,pc>::Lin(Space& home, Lin<Val,P,N,pc>& p)
: Propagator(home,p), c(p.c) {
x.update(home,p.x);
y.update(home,p.y);
}
template<class Val, class P, class N, PropCond pc>
PropCost
Lin<Val,P,N,pc>::cost(const Space&, const ModEventDelta&) const {
return PropCost::linear(PropCost::LO, x.size()+y.size());
}
template<class Val, class P, class N, PropCond pc>
void
Lin<Val,P,N,pc>::reschedule(Space& home) {
x.reschedule(home,*this,pc);
y.reschedule(home,*this,pc);
}
template<class Val, class P, class N, PropCond pc>
forceinline size_t
Lin<Val,P,N,pc>::dispose(Space& home) {
x.cancel(home,*this,pc);
y.cancel(home,*this,pc);
(void) Propagator::dispose(home);
return sizeof(*this);
}
/*
* Reified linear propagators
*
*/
template<class Val, class P, class N, PropCond pc, class Ctrl>
forceinline
ReLin<Val,P,N,pc,Ctrl>::ReLin
(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c, Ctrl b0)
: Lin<Val,P,N,pc>(home,x,y,c), b(b0) {
b.subscribe(home,*this,PC_INT_VAL);
}
template<class Val, class P, class N, PropCond pc, class Ctrl>
forceinline
ReLin<Val,P,N,pc,Ctrl>::ReLin
(Space& home, ReLin<Val,P,N,pc,Ctrl>& p)
: Lin<Val,P,N,pc>(home,p) {
b.update(home,p.b);
}
template<class Val, class P, class N, PropCond pc, class Ctrl>
void
ReLin<Val,P,N,pc,Ctrl>::reschedule(Space& home) {
x.reschedule(home,*this,pc);
y.reschedule(home,*this,pc);
b.reschedule(home,*this,PC_INT_VAL);
}
template<class Val, class P, class N, PropCond pc, class Ctrl>
forceinline size_t
ReLin<Val,P,N,pc,Ctrl>::dispose(Space& home) {
b.cancel(home,*this,PC_BOOL_VAL);
(void) Lin<Val,P,N,pc>::dispose(home);
return sizeof(*this);
}
/*
* Computing bounds
*
*/
template<class Val, class View>
void
bounds_p(ModEventDelta med, ViewArray<View>& x, Val& c, Val& sl, Val& su) {
int n = x.size();
if (IntView::me(med) == ME_INT_VAL) {
for (int i=n; i--; ) {
Val m = x[i].min();
if (x[i].assigned()) {
c -= m; x[i] = x[--n];
} else {
sl -= m; su -= x[i].max();
}
}
x.size(n);
} else {
for (int i=0; i<n; i++) {
sl -= x[i].min(); su -= x[i].max();
}
}
}
template<class Val, class View>
void
bounds_n(ModEventDelta med, ViewArray<View>& y, Val& c, Val& sl, Val& su) {
int n = y.size();
if (IntView::me(med) == ME_INT_VAL) {
for (int i=n; i--; ) {
Val m = y[i].max();
if (y[i].assigned()) {
c += m; y[i] = y[--n];
} else {
sl += m; su += y[i].min();
}
}
y.size(n);
} else {
for (int i=0; i<n; i++) {
sl += y[i].max(); su += y[i].min();
}
}
}
template<class Val, class P, class N>
ExecStatus
prop_bnd(Space& home, ModEventDelta med, Propagator& p,
ViewArray<P>& x, ViewArray<N>& y, Val& c) {
// Eliminate singletons
Val sl = 0;
Val su = 0;
bounds_p<Val,P>(med, x, c, sl, su);
bounds_n<Val,N>(med, y, c, sl, su);
if ((IntView::me(med) == ME_INT_VAL) && ((x.size() + y.size()) <= 1)) {
if (x.size() == 1) {
GECODE_ME_CHECK(x[0].eq(home,c));
return home.ES_SUBSUMED(p);
}
if (y.size() == 1) {
GECODE_ME_CHECK(y[0].eq(home,-c));
return home.ES_SUBSUMED(p);
}
return (c == static_cast<Val>(0)) ?
home.ES_SUBSUMED(p) : ES_FAILED;
}
sl += c; su += c;
const int mod_sl = 1;
const int mod_su = 2;
int mod = mod_sl | mod_su;
do {
if (mod & mod_sl) {
mod -= mod_sl;
// Propagate upper bound for positive variables
for (int i=0; i<x.size(); i++) {
const Val xi_max = x[i].max();
ModEvent me = x[i].lq(home,sl + x[i].min());
if (me_failed(me))
return ES_FAILED;
if (me_modified(me)) {
su += xi_max - x[i].max();
mod |= mod_su;
}
}
// Propagate lower bound for negative variables
for (int i=0; i<y.size(); i++) {
const Val yi_min = y[i].min();
ModEvent me = y[i].gq(home,y[i].max() - sl);
if (me_failed(me))
return ES_FAILED;
if (me_modified(me)) {
su += y[i].min() - yi_min;
mod |= mod_su;
}
}
}
if (mod & mod_su) {
mod -= mod_su;
// Propagate lower bound for positive variables
for (int i=0; i<x.size(); i++) {
const Val xi_min = x[i].min();
ModEvent me = x[i].gq(home,su + x[i].max());
if (me_failed(me))
return ES_FAILED;
if (me_modified(me)) {
sl += xi_min - x[i].min();
mod |= mod_sl;
}
}
// Propagate upper bound for negative variables
for (int i=0; i<y.size(); i++) {
const Val yi_max = y[i].max();
ModEvent me = y[i].lq(home,y[i].min() - su);
if (me_failed(me))
return ES_FAILED;
if (me_modified(me)) {
sl += y[i].max() - yi_max;
mod |= mod_sl;
}
}
}
} while (mod);
return (sl == su) ? home.ES_SUBSUMED(p) : ES_FIX;
}
/*
* Bound consistent linear equation
*
*/
template<class Val, class P, class N>
forceinline
Eq<Val,P,N>::Eq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c)
: Lin<Val,P,N,PC_INT_BND>(home,x,y,c) {}
template<class Val, class P, class N>
ExecStatus
Eq<Val,P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c) {
ViewArray<NoView> nva;
if (y.size() == 0) {
(void) new (home) Eq<Val,P,NoView>(home,x,nva,c);
} else if (x.size() == 0) {
(void) new (home) Eq<Val,N,NoView>(home,y,nva,-c);
} else {
(void) new (home) Eq<Val,P,N>(home,x,y,c);
}
return ES_OK;
}
template<class Val, class P, class N>
forceinline
Eq<Val,P,N>::Eq(Space& home, Eq<Val,P,N>& p)
: Lin<Val,P,N,PC_INT_BND>(home,p) {}
/**
* \brief Rewriting of equality to binary propagators
*
*/
template<class Val, class P, class N>
forceinline Actor*
eqtobin(Space&, Propagator&, ViewArray<P>&, ViewArray<N>&, Val) {
return nullptr;
}
template<class Val>
forceinline Actor*
eqtobin(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
assert(x.size() == 2);
return new (home) EqBin<Val,IntView,IntView>
(home,p,x[0],x[1],c);
}
template<class Val>
forceinline Actor*
eqtobin(Space& home, Propagator& p,
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
assert(y.size() == 2);
return new (home) EqBin<Val,IntView,IntView>
(home,p,y[0],y[1],-c);
}
template<class Val>
forceinline Actor*
eqtobin(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
if (x.size() == 2)
return new (home) EqBin<Val,IntView,IntView>
(home,p,x[0],x[1],c);
if (x.size() == 1)
return new (home) EqBin<Val,IntView,MinusView>
(home,p,x[0],MinusView(y[0]),c);
return new (home) EqBin<Val,IntView,IntView>
(home,p,y[0],y[1],-c);
}
/**
* \brief Rewriting of equality to ternary propagators
*
*/
template<class Val, class P, class N>
forceinline Actor*
eqtoter(Space&, Propagator&, ViewArray<P>&, ViewArray<N>&, Val) {
return nullptr;
}
template<class Val>
forceinline Actor*
eqtoter(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
assert(x.size() == 3);
return new (home) EqTer<Val,IntView,IntView,IntView>
(home,p,x[0],x[1],x[2],c);
}
template<class Val>
forceinline Actor*
eqtoter(Space& home, Propagator& p,
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
assert(y.size() == 3);
return new (home) EqTer<Val,IntView,IntView,IntView>
(home,p,y[0],y[1],y[2],-c);
}
template<class Val>
forceinline Actor*
eqtoter(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
if (x.size() == 3)
return new (home) EqTer<Val,IntView,IntView,IntView>
(home,p,x[0],x[1],x[2],c);
if (x.size() == 2)
return new (home) EqTer<Val,IntView,IntView,MinusView>
(home,p,x[0],x[1],MinusView(y[0]),c);
if (x.size() == 1)
return new (home) EqTer<Val,IntView,IntView,MinusView>
(home,p,y[0],y[1],MinusView(x[0]),-c);
return new (home) EqTer<Val,IntView,IntView,IntView>
(home,p,y[0],y[1],y[2],-c);
}
template<class Val, class P, class N>
Actor*
Eq<Val,P,N>::copy(Space& home) {
if (isunit(x,y)) {
// Check whether rewriting is possible
if (x.size() + y.size() == 2)
return eqtobin(home,*this,x,y,c);
if (x.size() + y.size() == 3)
return eqtoter(home,*this,x,y,c);
}
return new (home) Eq<Val,P,N>(home,*this);
}
template<class Val, class P, class N>
ExecStatus
Eq<Val,P,N>::propagate(Space& home, const ModEventDelta& med) {
return prop_bnd<Val,P,N>(home,med,*this,x,y,c);
}
/*
* Reified bound consistent linear equation
*
*/
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
forceinline
ReEq<Val,P,N,Ctrl,rm>::ReEq(Home home,
ViewArray<P>& x, ViewArray<N>& y, Val c, Ctrl b)
: ReLin<Val,P,N,PC_INT_BND,Ctrl>(home,x,y,c,b) {}
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
ExecStatus
ReEq<Val,P,N,Ctrl,rm>::post(Home home,
ViewArray<P>& x, ViewArray<N>& y, Val c, Ctrl b) {
ViewArray<NoView> nva;
if (y.size() == 0) {
(void) new (home) ReEq<Val,P,NoView,Ctrl,rm>(home,x,nva,c,b);
} else if (x.size() == 0) {
(void) new (home) ReEq<Val,N,NoView,Ctrl,rm>(home,y,nva,-c,b);
} else {
(void) new (home) ReEq<Val,P,N,Ctrl,rm>(home,x,y,c,b);
}
return ES_OK;
}
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
forceinline
ReEq<Val,P,N,Ctrl,rm>::ReEq(Space& home, ReEq<Val,P,N,Ctrl,rm>& p)
: ReLin<Val,P,N,PC_INT_BND,Ctrl>(home,p) {}
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
Actor*
ReEq<Val,P,N,Ctrl,rm>::copy(Space& home) {
return new (home) ReEq<Val,P,N,Ctrl,rm>(home,*this);
}
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
ExecStatus
ReEq<Val,P,N,Ctrl,rm>::propagate(Space& home, const ModEventDelta& med) {
if (b.zero()) {
if (rm == RM_IMP)
return home.ES_SUBSUMED(*this);
GECODE_REWRITE(*this,(Nq<Val,P,N>::post(home(*this),x,y,c)));
}
if (b.one()) {
if (rm == RM_PMI)
return home.ES_SUBSUMED(*this);
GECODE_REWRITE(*this,(Eq<Val,P,N>::post(home(*this),x,y,c)));
}
Val sl = 0;
Val su = 0;
bounds_p<Val,P>(med, x, c, sl, su);
bounds_n<Val,N>(med, y, c, sl, su);
if ((-sl == c) && (-su == c)) {
if (rm != RM_IMP)
GECODE_ME_CHECK(b.one_none(home));
return home.ES_SUBSUMED(*this);
}
if ((-sl > c) || (-su < c)) {
if (rm != RM_PMI)
GECODE_ME_CHECK(b.zero_none(home));
return home.ES_SUBSUMED(*this);
}
return ES_FIX;
}
/*
* Domain consistent linear disequation
*
*/
template<class Val, class P, class N>
forceinline
Nq<Val,P,N>::Nq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c)
: Lin<Val,P,N,PC_INT_VAL>(home,x,y,c) {}
template<class Val, class P, class N>
ExecStatus
Nq<Val,P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c) {
ViewArray<NoView> nva;
if (y.size() == 0) {
(void) new (home) Nq<Val,P,NoView>(home,x,nva,c);
} else if (x.size() == 0) {
(void) new (home) Nq<Val,N,NoView>(home,y,nva,-c);
} else {
(void) new (home) Nq<Val,P,N>(home,x,y,c);
}
return ES_OK;
}
template<class Val, class P, class N>
forceinline
Nq<Val,P,N>::Nq(Space& home, Nq<Val,P,N>& p)
: Lin<Val,P,N,PC_INT_VAL>(home,p) {}
/**
* \brief Rewriting of disequality to binary propagators
*
*/
template<class Val, class P, class N>
forceinline Actor*
nqtobin(Space&, Propagator&, ViewArray<P>&, ViewArray<N>&, Val) {
return nullptr;
}
template<class Val>
forceinline Actor*
nqtobin(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
assert(x.size() == 2);
return new (home) NqBin<Val,IntView,IntView>
(home,p,x[0],x[1],c);
}
template<class Val>
forceinline Actor*
nqtobin(Space& home, Propagator& p,
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
assert(y.size() == 2);
return new (home) NqBin<Val,IntView,IntView>
(home,p,y[0],y[1],-c);
}
template<class Val>
forceinline Actor*
nqtobin(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
if (x.size() == 2)
return new (home) NqBin<Val,IntView,IntView>
(home,p,x[0],x[1],c);
if (x.size() == 1)
return new (home) NqBin<Val,IntView,MinusView>
(home,p,x[0],MinusView(y[0]),c);
return new (home) NqBin<Val,IntView,IntView>
(home,p,y[0],y[1],-c);
}
/**
* \brief Rewriting of disequality to ternary propagators
*
*/
template<class Val, class P, class N>
forceinline Actor*
nqtoter(Space&, Propagator&,ViewArray<P>&, ViewArray<N>&, Val) {
return nullptr;
}
template<class Val>
forceinline Actor*
nqtoter(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
assert(x.size() == 3);
return new (home) NqTer<Val,IntView,IntView,IntView>
(home,p,x[0],x[1],x[2],c);
}
template<class Val>
forceinline Actor*
nqtoter(Space& home, Propagator& p,
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
assert(y.size() == 3);
return new (home) NqTer<Val,IntView,IntView,IntView>
(home,p,y[0],y[1],y[2],-c);
}
template<class Val>
forceinline Actor*
nqtoter(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
if (x.size() == 3)
return new (home) NqTer<Val,IntView,IntView,IntView>
(home,p,x[0],x[1],x[2],c);
if (x.size() == 2)
return new (home) NqTer<Val,IntView,IntView,MinusView>
(home,p,x[0],x[1],MinusView(y[0]),c);
if (x.size() == 1)
return new (home) NqTer<Val,IntView,IntView,MinusView>
(home,p,y[0],y[1],MinusView(x[0]),-c);
return new (home) NqTer<Val,IntView,IntView,IntView>
(home,p,y[0],y[1],y[2],-c);
}
template<class Val, class P, class N>
Actor*
Nq<Val,P,N>::copy(Space& home) {
if (isunit(x,y)) {
// Check whether rewriting is possible
if (x.size() + y.size() == 2)
return nqtobin(home,*this,x,y,c);
if (x.size() + y.size() == 3)
return nqtoter(home,*this,x,y,c);
}
return new (home) Nq<Val,P,N>(home,*this);
}
template<class Val, class P, class N>
ExecStatus
Nq<Val,P,N>::propagate(Space& home, const ModEventDelta&) {
for (int i=x.size(); i--; )
if (x[i].assigned()) {
c -= x[i].val(); x.move_lst(i);
}
for (int i=y.size(); i--; )
if (y[i].assigned()) {
c += y[i].val(); y.move_lst(i);
}
if (x.size() + y.size() <= 1) {
if (x.size() == 1) {
GECODE_ME_CHECK(x[0].nq(home,c)); return home.ES_SUBSUMED(*this);
}
if (y.size() == 1) {
GECODE_ME_CHECK(y[0].nq(home,-c)); return home.ES_SUBSUMED(*this);
}
return (c == static_cast<Val>(0)) ?
ES_FAILED : home.ES_SUBSUMED(*this);
}
return ES_FIX;
}
/*
* Bound consistent linear inequation
*
*/
template<class Val, class P, class N>
forceinline
Lq<Val,P,N>::Lq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c)
: Lin<Val,P,N,PC_INT_BND>(home,x,y,c) {}
template<class Val, class P, class N>
ExecStatus
Lq<Val,P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c) {
ViewArray<NoView> nva;
if (y.size() == 0) {
(void) new (home) Lq<Val,P,NoView>(home,x,nva,c);
} else if (x.size() == 0) {
(void) new (home) Lq<Val,NoView,N>(home,nva,y,c);
} else {
(void) new (home) Lq<Val,P,N>(home,x,y,c);
}
return ES_OK;
}
template<class Val, class P, class N>
forceinline
Lq<Val,P,N>::Lq(Space& home, Lq<Val,P,N>& p)
: Lin<Val,P,N,PC_INT_BND>(home,p) {}
/**
* \brief Rewriting of inequality to binary propagators
*
*/
template<class Val, class P, class N>
forceinline Actor*
lqtobin(Space&, Propagator&,ViewArray<P>&, ViewArray<N>&, Val) {
return nullptr;
}
template<class Val>
forceinline Actor*
lqtobin(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
assert(x.size() == 2);
return new (home) LqBin<Val,IntView,IntView>
(home,p,x[0],x[1],c);
}
template<class Val>
forceinline Actor*
lqtobin(Space& home, Propagator& p,
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
assert(y.size() == 2);
return new (home) LqBin<Val,MinusView,MinusView>
(home,p,MinusView(y[0]),MinusView(y[1]),c);
}
template<class Val>
forceinline Actor*
lqtobin(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
if (x.size() == 2)
return new (home) LqBin<Val,IntView,IntView>
(home,p,x[0],x[1],c);
if (x.size() == 1)
return new (home) LqBin<Val,IntView,MinusView>
(home,p,x[0],MinusView(y[0]),c);
return new (home) LqBin<Val,MinusView,MinusView>
(home,p,MinusView(y[0]),MinusView(y[1]),c);
}
/**
* \brief Rewriting of inequality to ternary propagators
*
*/
template<class Val, class P, class N>
forceinline Actor*
lqtoter(Space&, Propagator&, ViewArray<P>&, ViewArray<N>&, Val) {
return nullptr;
}
template<class Val>
forceinline Actor*
lqtoter(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
assert(x.size() == 3);
return new (home) LqTer<Val,IntView,IntView,IntView>
(home,p,x[0],x[1],x[2],c);
}
template<class Val>
forceinline Actor*
lqtoter(Space& home, Propagator& p,
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
assert(y.size() == 3);
return new (home) LqTer<Val,MinusView,MinusView,MinusView>
(home,p,MinusView(y[0]),MinusView(y[1]),MinusView(y[2]),c);
}
template<class Val>
forceinline Actor*
lqtoter(Space& home, Propagator& p,
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
if (x.size() == 3)
return new (home) LqTer<Val,IntView,IntView,IntView>
(home,p,x[0],x[1],x[2],c);
if (x.size() == 2)
return new (home) LqTer<Val,IntView,IntView,MinusView>
(home,p,x[0],x[1],MinusView(y[0]),c);
if (x.size() == 1)
return new (home) LqTer<Val,IntView,MinusView,MinusView>
(home,p,x[0],MinusView(y[0]),MinusView(y[1]),c);
return new (home) LqTer<Val,MinusView,MinusView,MinusView>
(home,p,MinusView(y[0]),MinusView(y[1]),MinusView(y[2]),c);
}
template<class Val, class P, class N>
Actor*
Lq<Val,P,N>::copy(Space& home) {
if (isunit(x,y)) {
// Check whether rewriting is possible
if (x.size() + y.size() == 2)
return lqtobin(home,*this,x,y,c);
if (x.size() + y.size() == 3)
return lqtoter(home,*this,x,y,c);
}
return new (home) Lq<Val,P,N>(home,*this);
}
template<class Val, class P, class N>
ExecStatus
Lq<Val,P,N>::propagate(Space& home, const ModEventDelta& med) {
// Eliminate singletons
Val sl = 0;
if (IntView::me(med) == ME_INT_VAL) {
for (int i=x.size(); i--; ) {
Val m = x[i].min();
if (x[i].assigned()) {
c -= m; x.move_lst(i);
} else {
sl -= m;
}
}
for (int i=y.size(); i--; ) {
Val m = y[i].max();
if (y[i].assigned()) {
c += m; y.move_lst(i);
} else {
sl += m;
}
}
if ((x.size() + y.size()) <= 1) {
if (x.size() == 1) {
GECODE_ME_CHECK(x[0].lq(home,c));
return home.ES_SUBSUMED(*this);
}
if (y.size() == 1) {
GECODE_ME_CHECK(y[0].gq(home,-c));
return home.ES_SUBSUMED(*this);
}
return (c >= static_cast<Val>(0)) ?
home.ES_SUBSUMED(*this) : ES_FAILED;
}
} else {
for (int i=0; i<x.size(); i++)
sl -= x[i].min();
for (int i=0; i<y.size(); i++)
sl += y[i].max();
}
sl += c;
ExecStatus es = ES_FIX;
bool assigned = true;
for (int i=0; i<x.size(); i++) {
assert(!x[i].assigned());
Val slx = sl + x[i].min();
ModEvent me = x[i].lq(home,slx);
if (me == ME_INT_FAILED)
return ES_FAILED;
if (me != ME_INT_VAL)
assigned = false;
if (me_modified(me) && (slx != x[i].max()))
es = ES_NOFIX;
}
for (int i=0; i<y.size(); i++) {
assert(!y[i].assigned());
Val sly = y[i].max() - sl;
ModEvent me = y[i].gq(home,sly);
if (me == ME_INT_FAILED)
return ES_FAILED;
if (me != ME_INT_VAL)
assigned = false;
if (me_modified(me) && (sly != y[i].min()))
es = ES_NOFIX;
}
return assigned ? home.ES_SUBSUMED(*this) : es;
}
/*
* Reified bound consistent linear inequation
*
*/
template<class Val, class P, class N, ReifyMode rm>
forceinline
ReLq<Val,P,N,rm>::ReLq(Home home,
ViewArray<P>& x, ViewArray<N>& y, Val c, BoolView b)
: ReLin<Val,P,N,PC_INT_BND,BoolView>(home,x,y,c,b) {}
template<class Val, class P, class N, ReifyMode rm>
ExecStatus
ReLq<Val,P,N,rm>::post(Home home,
ViewArray<P>& x, ViewArray<N>& y, Val c, BoolView b) {
ViewArray<NoView> nva;
if (y.size() == 0) {
(void) new (home) ReLq<Val,P,NoView,rm>(home,x,nva,c,b);
} else if (x.size() == 0) {
(void) new (home) ReLq<Val,NoView,N,rm>(home,nva,y,c,b);
} else {
(void) new (home) ReLq<Val,P,N,rm>(home,x,y,c,b);
}
return ES_OK;
}
template<class Val, class P, class N, ReifyMode rm>
forceinline
ReLq<Val,P,N,rm>::ReLq(Space& home, ReLq<Val,P,N,rm>& p)
: ReLin<Val,P,N,PC_INT_BND,BoolView>(home,p) {}
template<class Val, class P, class N, ReifyMode rm>
Actor*
ReLq<Val,P,N,rm>::copy(Space& home) {
return new (home) ReLq<Val,P,N,rm>(home,*this);
}
template<class Val, class P, class N, ReifyMode rm>
ExecStatus
ReLq<Val,P,N,rm>::propagate(Space& home, const ModEventDelta& med) {
if (b.zero()) {
if (rm == RM_IMP)
return home.ES_SUBSUMED(*this);
GECODE_REWRITE(*this,(Lq<Val,N,P>::post(home(*this),y,x,-c-1)));
}
if (b.one()) {
if (rm == RM_PMI)
return home.ES_SUBSUMED(*this);
GECODE_REWRITE(*this,(Lq<Val,P,N>::post(home(*this),x,y,c)));
}
// Eliminate singletons
Val sl = 0;
Val su = 0;
bounds_p<Val,P>(med,x,c,sl,su);
bounds_n<Val,N>(med,y,c,sl,su);
if (-sl > c) {
if (rm != RM_PMI)
GECODE_ME_CHECK(b.zero_none(home));
return home.ES_SUBSUMED(*this);
}
if (-su <= c) {
if (rm != RM_IMP)
GECODE_ME_CHECK(b.one_none(home));
return home.ES_SUBSUMED(*this);
}
return ES_FIX;
}
}}}
// STATISTICS: int-prop