git-subtree-dir: software/gecode_on_replay git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
892 lines
25 KiB
C++
Executable File
892 lines
25 KiB
C++
Executable File
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Christian Schulte <schulte@gecode.org>
|
|
*
|
|
* Copyright:
|
|
* Christian Schulte, 2003
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <gecode/int/linear/int-noview.hpp>
|
|
|
|
namespace Gecode { namespace Int { namespace Linear {
|
|
|
|
/**
|
|
* \brief Test if only unit-coefficient arrays used
|
|
*
|
|
*/
|
|
template<class P, class N>
|
|
forceinline bool
|
|
isunit(ViewArray<P>&, ViewArray<N>&) { return false; }
|
|
template<>
|
|
forceinline bool
|
|
isunit(ViewArray<IntView>&, ViewArray<IntView>&) { return true; }
|
|
template<>
|
|
forceinline bool
|
|
isunit(ViewArray<IntView>&, ViewArray<NoView>&) { return true; }
|
|
template<>
|
|
forceinline bool
|
|
isunit(ViewArray<NoView>&, ViewArray<IntView>&) { return true; }
|
|
|
|
/*
|
|
* Linear propagators
|
|
*
|
|
*/
|
|
template<class Val, class P, class N, PropCond pc>
|
|
forceinline
|
|
Lin<Val,P,N,pc>::Lin(Home home, ViewArray<P>& x0, ViewArray<N>& y0, Val c0)
|
|
: Propagator(home), x(x0), y(y0), c(c0) {
|
|
x.subscribe(home,*this,pc);
|
|
y.subscribe(home,*this,pc);
|
|
}
|
|
|
|
template<class Val, class P, class N, PropCond pc>
|
|
forceinline
|
|
Lin<Val,P,N,pc>::Lin(Space& home, Lin<Val,P,N,pc>& p)
|
|
: Propagator(home,p), c(p.c) {
|
|
x.update(home,p.x);
|
|
y.update(home,p.y);
|
|
}
|
|
|
|
template<class Val, class P, class N, PropCond pc>
|
|
PropCost
|
|
Lin<Val,P,N,pc>::cost(const Space&, const ModEventDelta&) const {
|
|
return PropCost::linear(PropCost::LO, x.size()+y.size());
|
|
}
|
|
|
|
template<class Val, class P, class N, PropCond pc>
|
|
void
|
|
Lin<Val,P,N,pc>::reschedule(Space& home) {
|
|
x.reschedule(home,*this,pc);
|
|
y.reschedule(home,*this,pc);
|
|
}
|
|
|
|
template<class Val, class P, class N, PropCond pc>
|
|
forceinline size_t
|
|
Lin<Val,P,N,pc>::dispose(Space& home) {
|
|
x.cancel(home,*this,pc);
|
|
y.cancel(home,*this,pc);
|
|
(void) Propagator::dispose(home);
|
|
return sizeof(*this);
|
|
}
|
|
|
|
/*
|
|
* Reified linear propagators
|
|
*
|
|
*/
|
|
template<class Val, class P, class N, PropCond pc, class Ctrl>
|
|
forceinline
|
|
ReLin<Val,P,N,pc,Ctrl>::ReLin
|
|
(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c, Ctrl b0)
|
|
: Lin<Val,P,N,pc>(home,x,y,c), b(b0) {
|
|
b.subscribe(home,*this,PC_INT_VAL);
|
|
}
|
|
|
|
template<class Val, class P, class N, PropCond pc, class Ctrl>
|
|
forceinline
|
|
ReLin<Val,P,N,pc,Ctrl>::ReLin
|
|
(Space& home, ReLin<Val,P,N,pc,Ctrl>& p)
|
|
: Lin<Val,P,N,pc>(home,p) {
|
|
b.update(home,p.b);
|
|
}
|
|
|
|
template<class Val, class P, class N, PropCond pc, class Ctrl>
|
|
void
|
|
ReLin<Val,P,N,pc,Ctrl>::reschedule(Space& home) {
|
|
x.reschedule(home,*this,pc);
|
|
y.reschedule(home,*this,pc);
|
|
b.reschedule(home,*this,PC_INT_VAL);
|
|
}
|
|
|
|
template<class Val, class P, class N, PropCond pc, class Ctrl>
|
|
forceinline size_t
|
|
ReLin<Val,P,N,pc,Ctrl>::dispose(Space& home) {
|
|
b.cancel(home,*this,PC_BOOL_VAL);
|
|
(void) Lin<Val,P,N,pc>::dispose(home);
|
|
return sizeof(*this);
|
|
}
|
|
|
|
/*
|
|
* Computing bounds
|
|
*
|
|
*/
|
|
|
|
template<class Val, class View>
|
|
void
|
|
bounds_p(ModEventDelta med, ViewArray<View>& x, Val& c, Val& sl, Val& su) {
|
|
int n = x.size();
|
|
if (IntView::me(med) == ME_INT_VAL) {
|
|
for (int i=n; i--; ) {
|
|
Val m = x[i].min();
|
|
if (x[i].assigned()) {
|
|
c -= m; x[i] = x[--n];
|
|
} else {
|
|
sl -= m; su -= x[i].max();
|
|
}
|
|
}
|
|
x.size(n);
|
|
} else {
|
|
for (int i=0; i<n; i++) {
|
|
sl -= x[i].min(); su -= x[i].max();
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Val, class View>
|
|
void
|
|
bounds_n(ModEventDelta med, ViewArray<View>& y, Val& c, Val& sl, Val& su) {
|
|
int n = y.size();
|
|
if (IntView::me(med) == ME_INT_VAL) {
|
|
for (int i=n; i--; ) {
|
|
Val m = y[i].max();
|
|
if (y[i].assigned()) {
|
|
c += m; y[i] = y[--n];
|
|
} else {
|
|
sl += m; su += y[i].min();
|
|
}
|
|
}
|
|
y.size(n);
|
|
} else {
|
|
for (int i=0; i<n; i++) {
|
|
sl += y[i].max(); su += y[i].min();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<class Val, class P, class N>
|
|
ExecStatus
|
|
prop_bnd(Space& home, ModEventDelta med, Propagator& p,
|
|
ViewArray<P>& x, ViewArray<N>& y, Val& c) {
|
|
// Eliminate singletons
|
|
Val sl = 0;
|
|
Val su = 0;
|
|
|
|
bounds_p<Val,P>(med, x, c, sl, su);
|
|
bounds_n<Val,N>(med, y, c, sl, su);
|
|
|
|
if ((IntView::me(med) == ME_INT_VAL) && ((x.size() + y.size()) <= 1)) {
|
|
if (x.size() == 1) {
|
|
GECODE_ME_CHECK(x[0].eq(home,c));
|
|
return home.ES_SUBSUMED(p);
|
|
}
|
|
if (y.size() == 1) {
|
|
GECODE_ME_CHECK(y[0].eq(home,-c));
|
|
return home.ES_SUBSUMED(p);
|
|
}
|
|
return (c == static_cast<Val>(0)) ?
|
|
home.ES_SUBSUMED(p) : ES_FAILED;
|
|
}
|
|
|
|
sl += c; su += c;
|
|
|
|
const int mod_sl = 1;
|
|
const int mod_su = 2;
|
|
|
|
int mod = mod_sl | mod_su;
|
|
|
|
do {
|
|
if (mod & mod_sl) {
|
|
mod -= mod_sl;
|
|
// Propagate upper bound for positive variables
|
|
for (int i=0; i<x.size(); i++) {
|
|
const Val xi_max = x[i].max();
|
|
ModEvent me = x[i].lq(home,sl + x[i].min());
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me_modified(me)) {
|
|
su += xi_max - x[i].max();
|
|
mod |= mod_su;
|
|
}
|
|
}
|
|
// Propagate lower bound for negative variables
|
|
for (int i=0; i<y.size(); i++) {
|
|
const Val yi_min = y[i].min();
|
|
ModEvent me = y[i].gq(home,y[i].max() - sl);
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me_modified(me)) {
|
|
su += y[i].min() - yi_min;
|
|
mod |= mod_su;
|
|
}
|
|
}
|
|
}
|
|
if (mod & mod_su) {
|
|
mod -= mod_su;
|
|
// Propagate lower bound for positive variables
|
|
for (int i=0; i<x.size(); i++) {
|
|
const Val xi_min = x[i].min();
|
|
ModEvent me = x[i].gq(home,su + x[i].max());
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me_modified(me)) {
|
|
sl += xi_min - x[i].min();
|
|
mod |= mod_sl;
|
|
}
|
|
}
|
|
// Propagate upper bound for negative variables
|
|
for (int i=0; i<y.size(); i++) {
|
|
const Val yi_max = y[i].max();
|
|
ModEvent me = y[i].lq(home,y[i].min() - su);
|
|
if (me_failed(me))
|
|
return ES_FAILED;
|
|
if (me_modified(me)) {
|
|
sl += y[i].max() - yi_max;
|
|
mod |= mod_sl;
|
|
}
|
|
}
|
|
}
|
|
} while (mod);
|
|
|
|
return (sl == su) ? home.ES_SUBSUMED(p) : ES_FIX;
|
|
}
|
|
|
|
/*
|
|
* Bound consistent linear equation
|
|
*
|
|
*/
|
|
|
|
template<class Val, class P, class N>
|
|
forceinline
|
|
Eq<Val,P,N>::Eq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c)
|
|
: Lin<Val,P,N,PC_INT_BND>(home,x,y,c) {}
|
|
|
|
template<class Val, class P, class N>
|
|
ExecStatus
|
|
Eq<Val,P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c) {
|
|
ViewArray<NoView> nva;
|
|
if (y.size() == 0) {
|
|
(void) new (home) Eq<Val,P,NoView>(home,x,nva,c);
|
|
} else if (x.size() == 0) {
|
|
(void) new (home) Eq<Val,N,NoView>(home,y,nva,-c);
|
|
} else {
|
|
(void) new (home) Eq<Val,P,N>(home,x,y,c);
|
|
}
|
|
return ES_OK;
|
|
}
|
|
|
|
|
|
template<class Val, class P, class N>
|
|
forceinline
|
|
Eq<Val,P,N>::Eq(Space& home, Eq<Val,P,N>& p)
|
|
: Lin<Val,P,N,PC_INT_BND>(home,p) {}
|
|
|
|
/**
|
|
* \brief Rewriting of equality to binary propagators
|
|
*
|
|
*/
|
|
template<class Val, class P, class N>
|
|
forceinline Actor*
|
|
eqtobin(Space&, Propagator&, ViewArray<P>&, ViewArray<N>&, Val) {
|
|
return nullptr;
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
eqtobin(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
|
|
assert(x.size() == 2);
|
|
return new (home) EqBin<Val,IntView,IntView>
|
|
(home,p,x[0],x[1],c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
eqtobin(Space& home, Propagator& p,
|
|
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
|
|
assert(y.size() == 2);
|
|
return new (home) EqBin<Val,IntView,IntView>
|
|
(home,p,y[0],y[1],-c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
eqtobin(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
|
|
if (x.size() == 2)
|
|
return new (home) EqBin<Val,IntView,IntView>
|
|
(home,p,x[0],x[1],c);
|
|
if (x.size() == 1)
|
|
return new (home) EqBin<Val,IntView,MinusView>
|
|
(home,p,x[0],MinusView(y[0]),c);
|
|
return new (home) EqBin<Val,IntView,IntView>
|
|
(home,p,y[0],y[1],-c);
|
|
}
|
|
|
|
/**
|
|
* \brief Rewriting of equality to ternary propagators
|
|
*
|
|
*/
|
|
template<class Val, class P, class N>
|
|
forceinline Actor*
|
|
eqtoter(Space&, Propagator&, ViewArray<P>&, ViewArray<N>&, Val) {
|
|
return nullptr;
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
eqtoter(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
|
|
assert(x.size() == 3);
|
|
return new (home) EqTer<Val,IntView,IntView,IntView>
|
|
(home,p,x[0],x[1],x[2],c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
eqtoter(Space& home, Propagator& p,
|
|
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
|
|
assert(y.size() == 3);
|
|
return new (home) EqTer<Val,IntView,IntView,IntView>
|
|
(home,p,y[0],y[1],y[2],-c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
eqtoter(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
|
|
if (x.size() == 3)
|
|
return new (home) EqTer<Val,IntView,IntView,IntView>
|
|
(home,p,x[0],x[1],x[2],c);
|
|
if (x.size() == 2)
|
|
return new (home) EqTer<Val,IntView,IntView,MinusView>
|
|
(home,p,x[0],x[1],MinusView(y[0]),c);
|
|
if (x.size() == 1)
|
|
return new (home) EqTer<Val,IntView,IntView,MinusView>
|
|
(home,p,y[0],y[1],MinusView(x[0]),-c);
|
|
return new (home) EqTer<Val,IntView,IntView,IntView>
|
|
(home,p,y[0],y[1],y[2],-c);
|
|
}
|
|
|
|
template<class Val, class P, class N>
|
|
Actor*
|
|
Eq<Val,P,N>::copy(Space& home) {
|
|
if (isunit(x,y)) {
|
|
// Check whether rewriting is possible
|
|
if (x.size() + y.size() == 2)
|
|
return eqtobin(home,*this,x,y,c);
|
|
if (x.size() + y.size() == 3)
|
|
return eqtoter(home,*this,x,y,c);
|
|
}
|
|
return new (home) Eq<Val,P,N>(home,*this);
|
|
}
|
|
|
|
template<class Val, class P, class N>
|
|
ExecStatus
|
|
Eq<Val,P,N>::propagate(Space& home, const ModEventDelta& med) {
|
|
return prop_bnd<Val,P,N>(home,med,*this,x,y,c);
|
|
}
|
|
|
|
/*
|
|
* Reified bound consistent linear equation
|
|
*
|
|
*/
|
|
|
|
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
|
|
forceinline
|
|
ReEq<Val,P,N,Ctrl,rm>::ReEq(Home home,
|
|
ViewArray<P>& x, ViewArray<N>& y, Val c, Ctrl b)
|
|
: ReLin<Val,P,N,PC_INT_BND,Ctrl>(home,x,y,c,b) {}
|
|
|
|
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
|
|
ExecStatus
|
|
ReEq<Val,P,N,Ctrl,rm>::post(Home home,
|
|
ViewArray<P>& x, ViewArray<N>& y, Val c, Ctrl b) {
|
|
ViewArray<NoView> nva;
|
|
if (y.size() == 0) {
|
|
(void) new (home) ReEq<Val,P,NoView,Ctrl,rm>(home,x,nva,c,b);
|
|
} else if (x.size() == 0) {
|
|
(void) new (home) ReEq<Val,N,NoView,Ctrl,rm>(home,y,nva,-c,b);
|
|
} else {
|
|
(void) new (home) ReEq<Val,P,N,Ctrl,rm>(home,x,y,c,b);
|
|
}
|
|
return ES_OK;
|
|
}
|
|
|
|
|
|
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
|
|
forceinline
|
|
ReEq<Val,P,N,Ctrl,rm>::ReEq(Space& home, ReEq<Val,P,N,Ctrl,rm>& p)
|
|
: ReLin<Val,P,N,PC_INT_BND,Ctrl>(home,p) {}
|
|
|
|
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
|
|
Actor*
|
|
ReEq<Val,P,N,Ctrl,rm>::copy(Space& home) {
|
|
return new (home) ReEq<Val,P,N,Ctrl,rm>(home,*this);
|
|
}
|
|
|
|
template<class Val, class P, class N, class Ctrl, ReifyMode rm>
|
|
ExecStatus
|
|
ReEq<Val,P,N,Ctrl,rm>::propagate(Space& home, const ModEventDelta& med) {
|
|
if (b.zero()) {
|
|
if (rm == RM_IMP)
|
|
return home.ES_SUBSUMED(*this);
|
|
GECODE_REWRITE(*this,(Nq<Val,P,N>::post(home(*this),x,y,c)));
|
|
}
|
|
if (b.one()) {
|
|
if (rm == RM_PMI)
|
|
return home.ES_SUBSUMED(*this);
|
|
GECODE_REWRITE(*this,(Eq<Val,P,N>::post(home(*this),x,y,c)));
|
|
}
|
|
|
|
Val sl = 0;
|
|
Val su = 0;
|
|
|
|
bounds_p<Val,P>(med, x, c, sl, su);
|
|
bounds_n<Val,N>(med, y, c, sl, su);
|
|
|
|
if ((-sl == c) && (-su == c)) {
|
|
if (rm != RM_IMP)
|
|
GECODE_ME_CHECK(b.one_none(home));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
if ((-sl > c) || (-su < c)) {
|
|
if (rm != RM_PMI)
|
|
GECODE_ME_CHECK(b.zero_none(home));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
return ES_FIX;
|
|
}
|
|
|
|
|
|
/*
|
|
* Domain consistent linear disequation
|
|
*
|
|
*/
|
|
|
|
template<class Val, class P, class N>
|
|
forceinline
|
|
Nq<Val,P,N>::Nq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c)
|
|
: Lin<Val,P,N,PC_INT_VAL>(home,x,y,c) {}
|
|
|
|
template<class Val, class P, class N>
|
|
ExecStatus
|
|
Nq<Val,P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c) {
|
|
ViewArray<NoView> nva;
|
|
if (y.size() == 0) {
|
|
(void) new (home) Nq<Val,P,NoView>(home,x,nva,c);
|
|
} else if (x.size() == 0) {
|
|
(void) new (home) Nq<Val,N,NoView>(home,y,nva,-c);
|
|
} else {
|
|
(void) new (home) Nq<Val,P,N>(home,x,y,c);
|
|
}
|
|
return ES_OK;
|
|
}
|
|
|
|
|
|
template<class Val, class P, class N>
|
|
forceinline
|
|
Nq<Val,P,N>::Nq(Space& home, Nq<Val,P,N>& p)
|
|
: Lin<Val,P,N,PC_INT_VAL>(home,p) {}
|
|
|
|
/**
|
|
* \brief Rewriting of disequality to binary propagators
|
|
*
|
|
*/
|
|
template<class Val, class P, class N>
|
|
forceinline Actor*
|
|
nqtobin(Space&, Propagator&, ViewArray<P>&, ViewArray<N>&, Val) {
|
|
return nullptr;
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
nqtobin(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
|
|
assert(x.size() == 2);
|
|
return new (home) NqBin<Val,IntView,IntView>
|
|
(home,p,x[0],x[1],c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
nqtobin(Space& home, Propagator& p,
|
|
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
|
|
assert(y.size() == 2);
|
|
return new (home) NqBin<Val,IntView,IntView>
|
|
(home,p,y[0],y[1],-c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
nqtobin(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
|
|
if (x.size() == 2)
|
|
return new (home) NqBin<Val,IntView,IntView>
|
|
(home,p,x[0],x[1],c);
|
|
if (x.size() == 1)
|
|
return new (home) NqBin<Val,IntView,MinusView>
|
|
(home,p,x[0],MinusView(y[0]),c);
|
|
return new (home) NqBin<Val,IntView,IntView>
|
|
(home,p,y[0],y[1],-c);
|
|
}
|
|
|
|
/**
|
|
* \brief Rewriting of disequality to ternary propagators
|
|
*
|
|
*/
|
|
template<class Val, class P, class N>
|
|
forceinline Actor*
|
|
nqtoter(Space&, Propagator&,ViewArray<P>&, ViewArray<N>&, Val) {
|
|
return nullptr;
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
nqtoter(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
|
|
assert(x.size() == 3);
|
|
return new (home) NqTer<Val,IntView,IntView,IntView>
|
|
(home,p,x[0],x[1],x[2],c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
nqtoter(Space& home, Propagator& p,
|
|
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
|
|
assert(y.size() == 3);
|
|
return new (home) NqTer<Val,IntView,IntView,IntView>
|
|
(home,p,y[0],y[1],y[2],-c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
nqtoter(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
|
|
if (x.size() == 3)
|
|
return new (home) NqTer<Val,IntView,IntView,IntView>
|
|
(home,p,x[0],x[1],x[2],c);
|
|
if (x.size() == 2)
|
|
return new (home) NqTer<Val,IntView,IntView,MinusView>
|
|
(home,p,x[0],x[1],MinusView(y[0]),c);
|
|
if (x.size() == 1)
|
|
return new (home) NqTer<Val,IntView,IntView,MinusView>
|
|
(home,p,y[0],y[1],MinusView(x[0]),-c);
|
|
return new (home) NqTer<Val,IntView,IntView,IntView>
|
|
(home,p,y[0],y[1],y[2],-c);
|
|
}
|
|
|
|
template<class Val, class P, class N>
|
|
Actor*
|
|
Nq<Val,P,N>::copy(Space& home) {
|
|
if (isunit(x,y)) {
|
|
// Check whether rewriting is possible
|
|
if (x.size() + y.size() == 2)
|
|
return nqtobin(home,*this,x,y,c);
|
|
if (x.size() + y.size() == 3)
|
|
return nqtoter(home,*this,x,y,c);
|
|
}
|
|
return new (home) Nq<Val,P,N>(home,*this);
|
|
}
|
|
|
|
template<class Val, class P, class N>
|
|
ExecStatus
|
|
Nq<Val,P,N>::propagate(Space& home, const ModEventDelta&) {
|
|
for (int i=x.size(); i--; )
|
|
if (x[i].assigned()) {
|
|
c -= x[i].val(); x.move_lst(i);
|
|
}
|
|
for (int i=y.size(); i--; )
|
|
if (y[i].assigned()) {
|
|
c += y[i].val(); y.move_lst(i);
|
|
}
|
|
if (x.size() + y.size() <= 1) {
|
|
if (x.size() == 1) {
|
|
GECODE_ME_CHECK(x[0].nq(home,c)); return home.ES_SUBSUMED(*this);
|
|
}
|
|
if (y.size() == 1) {
|
|
GECODE_ME_CHECK(y[0].nq(home,-c)); return home.ES_SUBSUMED(*this);
|
|
}
|
|
return (c == static_cast<Val>(0)) ?
|
|
ES_FAILED : home.ES_SUBSUMED(*this);
|
|
}
|
|
return ES_FIX;
|
|
}
|
|
|
|
|
|
/*
|
|
* Bound consistent linear inequation
|
|
*
|
|
*/
|
|
|
|
template<class Val, class P, class N>
|
|
forceinline
|
|
Lq<Val,P,N>::Lq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c)
|
|
: Lin<Val,P,N,PC_INT_BND>(home,x,y,c) {}
|
|
|
|
template<class Val, class P, class N>
|
|
ExecStatus
|
|
Lq<Val,P,N>::post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c) {
|
|
ViewArray<NoView> nva;
|
|
if (y.size() == 0) {
|
|
(void) new (home) Lq<Val,P,NoView>(home,x,nva,c);
|
|
} else if (x.size() == 0) {
|
|
(void) new (home) Lq<Val,NoView,N>(home,nva,y,c);
|
|
} else {
|
|
(void) new (home) Lq<Val,P,N>(home,x,y,c);
|
|
}
|
|
return ES_OK;
|
|
}
|
|
|
|
|
|
template<class Val, class P, class N>
|
|
forceinline
|
|
Lq<Val,P,N>::Lq(Space& home, Lq<Val,P,N>& p)
|
|
: Lin<Val,P,N,PC_INT_BND>(home,p) {}
|
|
|
|
/**
|
|
* \brief Rewriting of inequality to binary propagators
|
|
*
|
|
*/
|
|
template<class Val, class P, class N>
|
|
forceinline Actor*
|
|
lqtobin(Space&, Propagator&,ViewArray<P>&, ViewArray<N>&, Val) {
|
|
return nullptr;
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
lqtobin(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
|
|
assert(x.size() == 2);
|
|
return new (home) LqBin<Val,IntView,IntView>
|
|
(home,p,x[0],x[1],c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
lqtobin(Space& home, Propagator& p,
|
|
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
|
|
assert(y.size() == 2);
|
|
return new (home) LqBin<Val,MinusView,MinusView>
|
|
(home,p,MinusView(y[0]),MinusView(y[1]),c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
lqtobin(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
|
|
if (x.size() == 2)
|
|
return new (home) LqBin<Val,IntView,IntView>
|
|
(home,p,x[0],x[1],c);
|
|
if (x.size() == 1)
|
|
return new (home) LqBin<Val,IntView,MinusView>
|
|
(home,p,x[0],MinusView(y[0]),c);
|
|
return new (home) LqBin<Val,MinusView,MinusView>
|
|
(home,p,MinusView(y[0]),MinusView(y[1]),c);
|
|
}
|
|
|
|
/**
|
|
* \brief Rewriting of inequality to ternary propagators
|
|
*
|
|
*/
|
|
template<class Val, class P, class N>
|
|
forceinline Actor*
|
|
lqtoter(Space&, Propagator&, ViewArray<P>&, ViewArray<N>&, Val) {
|
|
return nullptr;
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
lqtoter(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<NoView>&, Val c) {
|
|
assert(x.size() == 3);
|
|
return new (home) LqTer<Val,IntView,IntView,IntView>
|
|
(home,p,x[0],x[1],x[2],c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
lqtoter(Space& home, Propagator& p,
|
|
ViewArray<NoView>&, ViewArray<IntView>& y, Val c) {
|
|
assert(y.size() == 3);
|
|
return new (home) LqTer<Val,MinusView,MinusView,MinusView>
|
|
(home,p,MinusView(y[0]),MinusView(y[1]),MinusView(y[2]),c);
|
|
}
|
|
template<class Val>
|
|
forceinline Actor*
|
|
lqtoter(Space& home, Propagator& p,
|
|
ViewArray<IntView>& x, ViewArray<IntView>& y, Val c) {
|
|
if (x.size() == 3)
|
|
return new (home) LqTer<Val,IntView,IntView,IntView>
|
|
(home,p,x[0],x[1],x[2],c);
|
|
if (x.size() == 2)
|
|
return new (home) LqTer<Val,IntView,IntView,MinusView>
|
|
(home,p,x[0],x[1],MinusView(y[0]),c);
|
|
if (x.size() == 1)
|
|
return new (home) LqTer<Val,IntView,MinusView,MinusView>
|
|
(home,p,x[0],MinusView(y[0]),MinusView(y[1]),c);
|
|
return new (home) LqTer<Val,MinusView,MinusView,MinusView>
|
|
(home,p,MinusView(y[0]),MinusView(y[1]),MinusView(y[2]),c);
|
|
}
|
|
|
|
template<class Val, class P, class N>
|
|
Actor*
|
|
Lq<Val,P,N>::copy(Space& home) {
|
|
if (isunit(x,y)) {
|
|
// Check whether rewriting is possible
|
|
if (x.size() + y.size() == 2)
|
|
return lqtobin(home,*this,x,y,c);
|
|
if (x.size() + y.size() == 3)
|
|
return lqtoter(home,*this,x,y,c);
|
|
}
|
|
return new (home) Lq<Val,P,N>(home,*this);
|
|
}
|
|
|
|
template<class Val, class P, class N>
|
|
ExecStatus
|
|
Lq<Val,P,N>::propagate(Space& home, const ModEventDelta& med) {
|
|
// Eliminate singletons
|
|
Val sl = 0;
|
|
|
|
if (IntView::me(med) == ME_INT_VAL) {
|
|
for (int i=x.size(); i--; ) {
|
|
Val m = x[i].min();
|
|
if (x[i].assigned()) {
|
|
c -= m; x.move_lst(i);
|
|
} else {
|
|
sl -= m;
|
|
}
|
|
}
|
|
for (int i=y.size(); i--; ) {
|
|
Val m = y[i].max();
|
|
if (y[i].assigned()) {
|
|
c += m; y.move_lst(i);
|
|
} else {
|
|
sl += m;
|
|
}
|
|
}
|
|
if ((x.size() + y.size()) <= 1) {
|
|
if (x.size() == 1) {
|
|
GECODE_ME_CHECK(x[0].lq(home,c));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
if (y.size() == 1) {
|
|
GECODE_ME_CHECK(y[0].gq(home,-c));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
return (c >= static_cast<Val>(0)) ?
|
|
home.ES_SUBSUMED(*this) : ES_FAILED;
|
|
}
|
|
} else {
|
|
for (int i=0; i<x.size(); i++)
|
|
sl -= x[i].min();
|
|
for (int i=0; i<y.size(); i++)
|
|
sl += y[i].max();
|
|
}
|
|
|
|
sl += c;
|
|
|
|
ExecStatus es = ES_FIX;
|
|
bool assigned = true;
|
|
for (int i=0; i<x.size(); i++) {
|
|
assert(!x[i].assigned());
|
|
Val slx = sl + x[i].min();
|
|
ModEvent me = x[i].lq(home,slx);
|
|
if (me == ME_INT_FAILED)
|
|
return ES_FAILED;
|
|
if (me != ME_INT_VAL)
|
|
assigned = false;
|
|
if (me_modified(me) && (slx != x[i].max()))
|
|
es = ES_NOFIX;
|
|
}
|
|
|
|
for (int i=0; i<y.size(); i++) {
|
|
assert(!y[i].assigned());
|
|
Val sly = y[i].max() - sl;
|
|
ModEvent me = y[i].gq(home,sly);
|
|
if (me == ME_INT_FAILED)
|
|
return ES_FAILED;
|
|
if (me != ME_INT_VAL)
|
|
assigned = false;
|
|
if (me_modified(me) && (sly != y[i].min()))
|
|
es = ES_NOFIX;
|
|
}
|
|
return assigned ? home.ES_SUBSUMED(*this) : es;
|
|
}
|
|
|
|
/*
|
|
* Reified bound consistent linear inequation
|
|
*
|
|
*/
|
|
|
|
template<class Val, class P, class N, ReifyMode rm>
|
|
forceinline
|
|
ReLq<Val,P,N,rm>::ReLq(Home home,
|
|
ViewArray<P>& x, ViewArray<N>& y, Val c, BoolView b)
|
|
: ReLin<Val,P,N,PC_INT_BND,BoolView>(home,x,y,c,b) {}
|
|
|
|
template<class Val, class P, class N, ReifyMode rm>
|
|
ExecStatus
|
|
ReLq<Val,P,N,rm>::post(Home home,
|
|
ViewArray<P>& x, ViewArray<N>& y, Val c, BoolView b) {
|
|
ViewArray<NoView> nva;
|
|
if (y.size() == 0) {
|
|
(void) new (home) ReLq<Val,P,NoView,rm>(home,x,nva,c,b);
|
|
} else if (x.size() == 0) {
|
|
(void) new (home) ReLq<Val,NoView,N,rm>(home,nva,y,c,b);
|
|
} else {
|
|
(void) new (home) ReLq<Val,P,N,rm>(home,x,y,c,b);
|
|
}
|
|
return ES_OK;
|
|
}
|
|
|
|
|
|
template<class Val, class P, class N, ReifyMode rm>
|
|
forceinline
|
|
ReLq<Val,P,N,rm>::ReLq(Space& home, ReLq<Val,P,N,rm>& p)
|
|
: ReLin<Val,P,N,PC_INT_BND,BoolView>(home,p) {}
|
|
|
|
template<class Val, class P, class N, ReifyMode rm>
|
|
Actor*
|
|
ReLq<Val,P,N,rm>::copy(Space& home) {
|
|
return new (home) ReLq<Val,P,N,rm>(home,*this);
|
|
}
|
|
|
|
template<class Val, class P, class N, ReifyMode rm>
|
|
ExecStatus
|
|
ReLq<Val,P,N,rm>::propagate(Space& home, const ModEventDelta& med) {
|
|
if (b.zero()) {
|
|
if (rm == RM_IMP)
|
|
return home.ES_SUBSUMED(*this);
|
|
GECODE_REWRITE(*this,(Lq<Val,N,P>::post(home(*this),y,x,-c-1)));
|
|
}
|
|
if (b.one()) {
|
|
if (rm == RM_PMI)
|
|
return home.ES_SUBSUMED(*this);
|
|
GECODE_REWRITE(*this,(Lq<Val,P,N>::post(home(*this),x,y,c)));
|
|
}
|
|
|
|
// Eliminate singletons
|
|
Val sl = 0;
|
|
Val su = 0;
|
|
|
|
bounds_p<Val,P>(med,x,c,sl,su);
|
|
bounds_n<Val,N>(med,y,c,sl,su);
|
|
|
|
if (-sl > c) {
|
|
if (rm != RM_PMI)
|
|
GECODE_ME_CHECK(b.zero_none(home));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
if (-su <= c) {
|
|
if (rm != RM_IMP)
|
|
GECODE_ME_CHECK(b.one_none(home));
|
|
return home.ES_SUBSUMED(*this);
|
|
}
|
|
|
|
return ES_FIX;
|
|
}
|
|
|
|
}}}
|
|
|
|
// STATISTICS: int-prop
|
|
|