1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.

130 lines
3.7 KiB
C++

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Christian Schulte <schulte@gecode.org>
* Guido Tack <tack@gecode.org>
*
* Copyright:
* Christian Schulte, 2001
* Guido Tack, 2006
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <gecode/minimodel.hh>
using namespace Gecode;
/**
* \brief %Example: Magic sequence
*
* Find a magic sequence of length \f$n\f$. A magic sequence of
* length \f$n\f$ is a sequence \f[x_0,x_1, \ldots, x_{n-1}\f]
* of integers such that for every \f$i=0,\ldots,n-1\f$:
* - \f$x_i\f$ is an integer between \f$0\f$ and \f$n-1\f$.
* - the number \f$i\f$ occurs exactly \f$x_i\f$ times in the sequence.
*
* See problem 19 at http://www.csplib.org/.
*
* Note that "Modeling and Programming with Gecode" uses this example
* as a case study.
*
* \ingroup Example
*
*/
class MagicSequence : public Script {
private:
/// Length of sequence
const int n;
/// Sequence
IntVarArray s;
public:
/// Propagation to use for model
enum {
PROP_COUNT, ///< Use count constraints
PROP_GCC ///< Use single global cardinality constraint
};
/// The actual model
MagicSequence(const SizeOptions& opt)
: Script(opt), n(opt.size()), s(*this,n,0,n-1) {
switch (opt.propagation()) {
case PROP_COUNT:
for (int i=n; i--; )
count(*this, s, i, IRT_EQ, s[i]);
linear(*this, s, IRT_EQ, n);
break;
case PROP_GCC:
count(*this, s, s, opt.ipl());
break;
}
linear(*this, IntArgs::create(n,-1,1), s, IRT_EQ, 0);
branch(*this, s, INT_VAR_NONE(), INT_VAL_MAX());
}
/// Constructor for cloning \a e
MagicSequence(MagicSequence& e) : Script(e), n(e.n) {
s.update(*this, e.s);
}
/// Copy during cloning
virtual Space*
copy(void) {
return new MagicSequence(*this);
}
/// Print sequence
virtual
void print(std::ostream& os) const {
os << "\t";
for (int i = 0; i<n; i++) {
os << s[i] << ", ";
if ((i+1) % 20 == 0)
os << std::endl << "\t";
}
os << std::endl;
}
};
/** \brief Main-function
* \relates MagicSequence
*/
int
main(int argc, char* argv[]) {
SizeOptions opt("MagicSequence");
opt.solutions(0);
opt.iterations(4);
opt.size(500);
opt.propagation(MagicSequence::PROP_COUNT);
opt.propagation(MagicSequence::PROP_COUNT, "count");
opt.propagation(MagicSequence::PROP_GCC, "gcc");
opt.parse(argc,argv);
Script::run<MagicSequence,DFS,SizeOptions>(opt);
return 0;
}
// STATISTICS: example-any