1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.

1086 lines
36 KiB
C++

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Guido Tack <guido.tack@monash.edu>
* Gleb Belov <gleb.belov@monash.edu>
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* This (main) file coordinates flattening and solving.
* The corresponding modules are flexibly plugged in
* as derived classes, prospectively from DLLs.
* A flattening module should provide MinZinc::GetFlattener()
* A solving module should provide an object of a class derived from SolverFactory.
* Need to get more flexible for multi-pass & multi-solving stuff TODO
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <chrono>
#include <cstdlib>
#include <ctime>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <ratio>
using namespace std;
#include <minizinc/flat_exp.hh>
#include <minizinc/solver.hh>
#include <minizinc/support/mza_parser.hh>
using namespace MiniZinc;
#ifdef HAS_GUROBI
#include <minizinc/solvers/MIP/MIP_gurobi_solverfactory.hh>
#endif
#ifdef HAS_CPLEX
#include <minizinc/solvers/MIP/MIP_cplex_solverfactory.hh>
#endif
#ifdef HAS_OSICBC
#include <minizinc/solvers/MIP/MIP_osicbc_solverfactory.hh>
#endif
#ifdef HAS_XPRESS
#include <minizinc/solvers/MIP/MIP_xpress_solverfactory.hh>
#endif
#ifdef HAS_GECODE
#include <minizinc/solvers/gecode_solverfactory.hh>
#endif
#ifdef HAS_GEAS
#include <minizinc/solvers/geas_solverfactory.hh>
#endif
#ifdef HAS_SCIP
#include <minizinc/solvers/MIP/MIP_scip_solverfactory.hh>
#endif
#include <minizinc/solvers/fzn_solverfactory.hh>
#include <minizinc/solvers/fzn_solverinstance.hh>
#include <minizinc/solvers/mzn_solverfactory.hh>
#include <minizinc/solvers/mzn_solverinstance.hh>
#include <minizinc/solvers/nl/nl_solverfactory.hh>
#include <minizinc/solvers/nl/nl_solverinstance.hh>
SolverInitialiser::SolverInitialiser(void) {
#ifdef HAS_GUROBI
Gurobi_SolverFactoryInitialiser _gurobi_init;
#endif
#ifdef HAS_CPLEX
static Cplex_SolverFactoryInitialiser _cplex_init;
#endif
#ifdef HAS_OSICBC
static OSICBC_SolverFactoryInitialiser _osicbc_init;
#endif
#ifdef HAS_XPRESS
static Xpress_SolverFactoryInitialiser _xpress_init;
#endif
#ifdef HAS_GECODE
static Gecode_SolverFactoryInitialiser _gecode_init;
#endif
#ifdef HAS_GEAS
static Geas_SolverFactoryInitialiser _geas_init;
#endif
#ifdef HAS_SCIP
static SCIP_SolverFactoryInitialiser _scip_init;
#endif
static FZN_SolverFactoryInitialiser _fzn_init;
static MZN_SolverFactoryInitialiser _mzn_init;
static NL_SolverFactoryInitialiser _nl_init;
}
MZNFZNSolverFlag MZNFZNSolverFlag::std(const std::string& n0) {
const std::string argFlags("-I -n -p -r");
if (argFlags.find(n0) != std::string::npos) return MZNFZNSolverFlag(FT_ARG, n0);
return MZNFZNSolverFlag(FT_NOARG, n0);
}
MZNFZNSolverFlag MZNFZNSolverFlag::extra(const std::string& n0, const std::string& t0) {
return MZNFZNSolverFlag(t0 == "bool" ? FT_NOARG : FT_ARG, n0);
}
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
SolverRegistry* MiniZinc::getGlobalSolverRegistry() {
static SolverRegistry sr;
return &sr;
}
void SolverRegistry::addSolverFactory(SolverFactory* pSF) {
assert(pSF);
sfstorage.push_back(pSF);
}
void SolverRegistry::removeSolverFactory(SolverFactory* pSF) {
auto it = find(sfstorage.begin(), sfstorage.end(), pSF);
assert(pSF);
sfstorage.erase(it);
}
/// Function createSI also adds each SI to the local storage
SolverInstanceBase* SolverFactory::createSI(std::ostream& log, SolverInstanceBase::Options* opt) {
SolverInstanceBase* pSI = doCreateSI(log, opt);
if (!pSI) {
throw InternalError("SolverFactory: failed to initialize solver " + getDescription());
}
sistorage.resize(sistorage.size() + 1);
sistorage.back().reset(pSI);
return pSI;
}
/// also providing a destroy function for a DLL or just special allocator etc.
void SolverFactory::destroySI(SolverInstanceBase* pSI) {
auto it = sistorage.begin();
for (; it != sistorage.end(); ++it)
if (it->get() == pSI) break;
if (sistorage.end() == it) {
cerr << " SolverFactory: failed to remove solver at " << pSI << endl;
throw InternalError(" SolverFactory: failed to remove solver");
}
sistorage.erase(it);
}
MznSolver::MznSolver(std::vector<std::string> args0)
: solver_configs(std::cerr),
executable_name("minizinc"),
os(std::cout),
log(std::cerr),
s2out(std::cout, std::cerr, solver_configs.mznlibDir()) {
std::vector<std::string> args = {executable_name};
args.insert(args.end(), args0.begin(), args0.end());
switch (processOptions(args)) {
case OPTION_FINISH:
return;
case OPTION_ERROR:
printUsage();
os << "More info with \"" << executable_name << " --help\"\n";
return;
case OPTION_OK:
break;
}
flatten(file, file);
// Definition* head = interpreter->_agg[0].def_stack;
// def_ptr = head;
}
MznSolver::~MznSolver() {
// if (si) // first the solver
// CleanupSolverInterface(si);
// TODO cleanup the used solver interfaces
delete interpreter;
si = 0;
si_opt = nullptr;
GC::trigger();
}
bool MznSolver::ifMzn2Fzn() { return is_mzn2fzn; }
bool MznSolver::ifSolns2out() { return s2out._opt.flag_standaloneSolns2Out; }
void MznSolver::addSolverInterface(SolverFactory* sf) {
si = sf->createSI(log, si_opt);
assert(si);
Model* m = in_out_defs.model();
if (m) {
for (FunctionIterator it = m->begin_functions(); it != m->end_functions(); ++it) {
if (!it->removed()) {
FunctionI& fi = *it;
if (fi.from_stdlib() || fi.ti()->type().isann() || fi.e()) {
continue;
}
si->addFunction(&fi);
}
}
}
si->setSolns2Out(new Solns2Out(os, log, ""));
// if (s2out.getEnv()==NULL)
// s2out.initFromEnv( flt.getEnv() );
// si->setSolns2Out( &s2out );
if (flag_compiler_verbose)
log
// << " ---------------------------------------------------------------------------\n"
<< " % SOLVING PHASE\n"
<< sf->getDescription(si_opt) << endl;
}
void MznSolver::addSolverInterface() {
GCLock lock;
if (sf == NULL) {
if (getGlobalSolverRegistry()->getSolverFactories().empty()) {
log << " MznSolver: NO SOLVER FACTORIES LINKED." << endl;
assert(0);
}
sf = getGlobalSolverRegistry()->getSolverFactories().back();
}
addSolverInterface(sf);
}
void MznSolver::printUsage() {
os << executable_name << ": ";
if (ifMzn2Fzn()) {
os << "MiniZinc to FlatZinc converter.\n"
<< "Usage: " << executable_name
<< " [<options>] [-I <include path>] <model>.mzn [<data>.dzn ...]" << std::endl;
} else if (ifSolns2out()) {
os << "Solutions to output translator.\n"
<< "Usage: " << executable_name << " [<options>] <model>.ozn" << std::endl;
} else {
os << "MiniZinc driver.\n"
<< "Usage: " << executable_name
<< " [<options>] [-I <include path>] <model>.mzn [<data>.dzn ...] or just <flat>.fzn"
<< std::endl;
}
}
void MznSolver::printHelp(const std::string& selectedSolver) {
printUsage();
os << "General options:" << std::endl
<< " --help, -h\n Print this help message." << std::endl
<< " --version\n Print version information." << std::endl
<< " --solvers\n Print list of available solvers." << std::endl
<< " --time-limit <ms>\n Stop after <ms> milliseconds (includes compilation and solving)."
<< std::endl
<< " --solver <solver id>, --solver <solver config file>.msc\n Select solver to use."
<< std::endl
<< " --help <solver id>\n Print help for a particular solver." << std::endl
<< " -v, -l, --verbose\n Print progress/log statements. Note that some solvers may log to "
"stdout."
<< std::endl
<< " --verbose-compilation\n Print progress/log statements for compilation." << std::endl
<< " -s, --statistics\n Print statistics." << std::endl
<< " --compiler-statistics\n Print statistics for compilation." << std::endl
<< " -c, --compile\n Compile only (do not run solver)." << std::endl
<< " --config-dirs\n Output configuration directories." << std::endl;
if (selectedSolver.empty()) {
// flt.printHelp(os);
os << endl;
if (!ifMzn2Fzn()) {
s2out.printHelp(os);
os << endl;
}
os << "Available solvers (get help using --help <solver id>):" << endl;
std::vector<std::string> solvers = solver_configs.solvers();
if (solvers.size() == 0) cout << " none.\n";
for (unsigned int i = 0; i < solvers.size(); i++) {
cout << " " << solvers[i] << endl;
}
} else {
const SolverConfig& sc = solver_configs.config(selectedSolver);
string solverId = sc.executable().empty() ? sc.id()
: (sc.supportsMzn() ? string("org.minizinc.mzn-mzn")
: string("org.minizinc.mzn-fzn"));
bool found = false;
for (auto it = getGlobalSolverRegistry()->getSolverFactories().rbegin();
it != getGlobalSolverRegistry()->getSolverFactories().rend(); ++it) {
if ((*it)->getId() == solverId) {
os << endl;
(*it)->printHelp(os);
if (!sc.executable().empty() && !sc.extraFlags().empty()) {
os << "Extra solver flags (use with ";
os << (sc.supportsMzn() ? "--mzn-flags" : "--fzn-flags") << ")" << endl;
for (const SolverConfig::ExtraFlag& ef : sc.extraFlags()) {
os << " " << ef.flag << endl << " " << ef.description << endl;
}
}
found = true;
}
}
if (!found) {
os << "No help found for solver " << selectedSolver << endl;
}
}
}
void addFlags(const std::string& sep, const std::vector<std::string>& in_args,
std::vector<std::string>& out_args) {
for (const std::string& arg : in_args) {
out_args.push_back(sep);
out_args.push_back(arg);
}
}
MznSolver::OptionStatus MznSolver::processOptions(std::vector<std::string>& argv) {
executable_name = argv[0];
executable_name = executable_name.substr(executable_name.find_last_of("/\\") + 1);
size_t lastdot = executable_name.find_last_of('.');
if (lastdot != std::string::npos) {
executable_name = executable_name.substr(0, lastdot);
}
string solver;
bool mzn2fzn_exe = (executable_name == "mzn2fzn");
if (mzn2fzn_exe) {
is_mzn2fzn = true;
} else if (executable_name == "solns2out") {
s2out._opt.flag_standaloneSolns2Out = true;
flag_is_solns2out = true;
}
bool compileSolutionChecker = false;
int i = 1, j = 1;
int argc = static_cast<int>(argv.size());
if (argc < 2) return OPTION_ERROR;
for (i = 1; i < argc; ++i) {
if (argv[i] == "-h" || argv[i] == "--help") {
if (argc > i + 1) {
printHelp(argv[i + 1]);
} else {
printHelp();
}
return OPTION_FINISH;
}
if (argv[i] == "--version") {
// flt.printVersion(cout);
return OPTION_FINISH;
}
if (argv[i] == "--solvers") {
cout << "MiniZinc driver.\nAvailable solver configurations:\n";
std::vector<std::string> solvers = solver_configs.solvers();
if (solvers.size() == 0) cout << " none.\n";
for (unsigned int i = 0; i < solvers.size(); i++) {
cout << " " << solvers[i] << endl;
}
cout << "Search path for solver configurations:\n";
for (const string& p : solver_configs.solverConfigsPath()) {
cout << " " << p << endl;
}
return OPTION_FINISH;
}
if (argv[i] == "--solvers-json") {
cout << solver_configs.solverConfigsJSON();
return OPTION_FINISH;
}
if (argv[i] == "--config-dirs") {
GCLock lock;
cout << "{\n";
cout << " \"globalConfigFile\" : \""
<< Printer::escapeStringLit(FileUtils::global_config_file()) << "\",\n";
cout << " \"userConfigFile\" : \"" << Printer::escapeStringLit(FileUtils::user_config_file())
<< "\",\n";
cout << " \"userSolverConfigDir\" : \""
<< Printer::escapeStringLit(FileUtils::user_config_dir()) << "/solvers\",\n";
cout << " \"mznStdlibDir\" : \"" << Printer::escapeStringLit(solver_configs.mznlibDir())
<< "\"\n";
cout << "}\n";
return OPTION_FINISH;
}
if (argv[i] == "--time-limit") {
++i;
if (i == argc) {
log << "Argument required for --time-limit" << endl;
return OPTION_ERROR;
}
flag_overall_time_limit = atoi(argv[i].c_str());
} else if (argv[i] == "--solver") {
++i;
if (i == argc) {
log << "Argument required for --solver" << endl;
return OPTION_ERROR;
}
if (solver.size() > 0 && solver != argv[i]) {
log << "Only one --solver option allowed" << endl;
return OPTION_ERROR;
}
solver = argv[i];
} else if (argv[i] == "--output-dict") {
output_dict = true;
} else if (argv[i] == "-c" || argv[i] == "--compile") {
is_mzn2fzn = true;
} else if (argv[i] == "-v" || argv[i] == "--verbose" || argv[i] == "-l") {
flag_verbose = true;
flag_compiler_verbose = true;
} else if (argv[i] == "--verbose-compilation") {
flag_compiler_verbose = true;
} else if (argv[i] == "-s" || argv[i] == "--statistics") {
flag_statistics = true;
flag_compiler_statistics = true;
} else if (argv[i] == "--compiler-statistics") {
flag_compiler_statistics = true;
} else {
if ((argv[i] == "--fzn-cmd" || argv[i] == "--flatzinc-cmd") && solver.empty()) {
solver = "org.minizinc.mzn-fzn";
}
if (argv[i] == "--compile-solution-checker") {
compileSolutionChecker = true;
}
if (argv[i] == "--ozn-file") {
flag_is_solns2out = true;
}
argv[j++] = argv[i];
}
}
argv.resize(j);
argc = j;
if ((mzn2fzn_exe || compileSolutionChecker) && solver.empty()) {
solver = "org.minizinc.mzn-fzn";
}
// if (flag_verbose) {
// argv.push_back("--verbose-solving");
// argc++;
// }
if (flag_statistics) {
argv.push_back("--solver-statistics");
argc++;
}
// flt.set_flag_output_by_default(ifMzn2Fzn());
bool isMznMzn = false;
if (!flag_is_solns2out) {
try {
const SolverConfig& sc = solver_configs.config(solver);
string solverId;
if (sc.executable().empty()) {
if (is_mzn2fzn) {
solverId = "org.minizinc.mzn-fzn";
} else {
solverId = sc.id();
}
} else if (sc.supportsMzn()) {
solverId = "org.minizinc.mzn-mzn";
} else if (sc.supportsFzn()) {
solverId = "org.minizinc.mzn-fzn";
} else if (sc.supportsNL()) {
solverId = "org.minizinc.mzn-nl";
} else {
log << "Selected solver does not support MiniZinc, FlatZinc or NL input." << endl;
return OPTION_ERROR;
}
for (auto it = getGlobalSolverRegistry()->getSolverFactories().begin();
it != getGlobalSolverRegistry()->getSolverFactories().end(); ++it) {
if ((*it)->getId() ==
solverId) { /// TODO: also check version (currently assumes all ids are unique)
sf = *it;
if (si_opt) {
delete si_opt;
}
si_opt = sf->createOptions();
if (!sc.executable().empty() || solverId == "org.minizinc.mzn-fzn" ||
solverId == "org.minizinc.mzn-nl") {
std::vector<MZNFZNSolverFlag> acceptedFlags;
for (auto& sf : sc.stdFlags()) acceptedFlags.push_back(MZNFZNSolverFlag::std(sf));
for (auto& ef : sc.extraFlags())
acceptedFlags.push_back(MZNFZNSolverFlag::extra(ef.flag, ef.flag_type));
// Collect arguments required for underlying exe
vector<string> fzn_mzn_flags;
if (sc.needsStdlibDir()) {
fzn_mzn_flags.push_back("--stdlib-dir");
fzn_mzn_flags.push_back(FileUtils::share_directory());
}
if (sc.needsMznExecutable()) {
fzn_mzn_flags.push_back("--minizinc-exe");
fzn_mzn_flags.push_back(FileUtils::progpath() + "/" + executable_name);
}
if (sc.supportsMzn()) {
isMznMzn = true;
static_cast<MZN_SolverFactory*>(sf)->setAcceptedFlags(si_opt, acceptedFlags);
std::vector<std::string> additionalArgs_s;
additionalArgs_s.push_back("-m");
if (sc.executable_resolved().size()) {
additionalArgs_s.push_back(sc.executable_resolved());
} else {
additionalArgs_s.push_back(sc.executable());
}
if (!fzn_mzn_flags.empty()) {
addFlags("--mzn-flag", fzn_mzn_flags, additionalArgs_s);
}
// This should maybe be moved to fill in fzn_mzn_flags when
// --find-muses is implemented (these arguments will be passed
// through to the subsolver of findMUS)
if (!sc.mznlib().empty()) {
if (sc.mznlib().substr(0, 2) == "-G") {
additionalArgs_s.push_back("--mzn-flag");
additionalArgs_s.push_back(sc.mznlib());
} else {
additionalArgs_s.push_back("--mzn-flag");
additionalArgs_s.push_back("-I");
additionalArgs_s.push_back("--mzn-flag");
std::string _mznlib;
if (sc.mznlib_resolved().size()) {
_mznlib = sc.mznlib_resolved();
} else {
_mznlib = sc.mznlib();
}
additionalArgs_s.push_back(_mznlib);
}
}
for (i = 0; i < additionalArgs_s.size(); ++i) {
bool success = sf->processOption(si_opt, i, additionalArgs_s);
if (!success) {
log << "Solver backend " << solverId << " does not recognise option "
<< additionalArgs_s[i] << "." << endl;
return OPTION_ERROR;
}
}
} else {
// supports fzn or nl
std::vector<std::string> additionalArgs;
if (sc.supportsFzn()) {
static_cast<FZN_SolverFactory*>(sf)->setAcceptedFlags(si_opt, acceptedFlags);
additionalArgs.push_back("--fzn-cmd");
} else {
// supports nl
additionalArgs.push_back("--nl-cmd");
}
if (sc.executable_resolved().size()) {
additionalArgs.push_back(sc.executable_resolved());
} else {
additionalArgs.push_back(sc.executable());
}
if (!fzn_mzn_flags.empty()) {
if (sc.supportsFzn()) {
addFlags("--fzn-flag", fzn_mzn_flags, additionalArgs);
} else {
addFlags("--nl-flag", fzn_mzn_flags, additionalArgs);
}
}
if (sc.needsPathsFile()) {
// Instruct flattener to hold onto paths
int i = 0;
vector<string> args{"--keep-paths"};
// flt.processOption(i, args);
// Instruct FznSolverInstance to write a path file
// and pass it to the executable with --paths arg
additionalArgs.push_back("--fzn-needs-paths");
}
if (!sc.needsSolns2Out()) {
additionalArgs.push_back("--fzn-output-passthrough");
}
int i = 0;
for (i = 0; i < additionalArgs.size(); ++i) {
bool success = sf->processOption(si_opt, i, additionalArgs);
if (!success) {
log << "Solver backend " << solverId << " does not recognise option "
<< additionalArgs[i] << "." << endl;
return OPTION_ERROR;
}
}
}
}
if (!sc.mznlib().empty()) {
if (sc.mznlib().substr(0, 2) == "-G") {
std::vector<std::string> additionalArgs({sc.mznlib()});
int i = 0;
// if (!flt.processOption(i, additionalArgs)) {
// log << "Flattener does not recognise option " << sc.mznlib() << endl;
// return OPTION_ERROR;
// }
} else {
std::vector<std::string> additionalArgs(2);
additionalArgs[0] = "-I";
if (sc.mznlib_resolved().size()) {
additionalArgs[1] = sc.mznlib_resolved();
} else {
additionalArgs[1] = sc.mznlib();
}
int i = 0;
// if (!flt.processOption(i, additionalArgs)) {
// log << "Flattener does not recognise option -I." << endl;
// return OPTION_ERROR;
// }
}
}
if (!sc.defaultFlags().empty()) {
std::vector<std::string> addedArgs;
addedArgs.push_back(argv[0]); // excutable name
for (auto& df : sc.defaultFlags()) {
addedArgs.push_back(df);
}
for (int i = 1; i < argv.size(); i++) {
addedArgs.push_back(argv[i]);
}
argv = addedArgs;
argc = addedArgs.size();
}
break;
}
}
} catch (ConfigException& e) {
log << "Config exception: " << e.msg() << endl;
return OPTION_ERROR;
}
if (sf == NULL) {
log << "Solver " << solver << " not found." << endl;
return OPTION_ERROR;
}
for (i = 1; i < argc; ++i) {
if (!ifMzn2Fzn() ? s2out.processOption(i, argv) : false) {
// } else if ((!isMznMzn || is_mzn2fzn) && flt.processOption(i, argv)) {
} else if (sf != NULL && sf->processOption(si_opt, i, argv)) {
} else {
size_t last_dot = argv[i].find_last_of('.');
if (last_dot != string::npos) {
std::string extension = argv[i].substr(last_dot, string::npos);
if (extension == ".uzn" || extension == ".mza") {
assert(file == "");
file = argv[i];
} else if (extension == ".dzn") {
data_files.push_back(argv[i]);
}
} else {
std::string executable_name(argv[0]);
executable_name = executable_name.substr(executable_name.find_last_of("/\\") + 1);
log << executable_name << ": Unrecognized option or bad format `" << argv[i] << "'"
<< endl;
return OPTION_ERROR;
}
}
}
return OPTION_OK;
} else {
for (i = 1; i < argc; ++i) {
if (s2out.processOption(i, argv)) {
} else {
std::string executable_name(argv[0]);
executable_name = executable_name.substr(executable_name.find_last_of("/\\") + 1);
log << executable_name << ": Unrecognized option or bad format `" << argv[i] << "'" << endl;
return OPTION_ERROR;
}
}
return OPTION_OK;
}
}
Val MznSolver::eval_val(EnvI& env, Expression* e) {
if (e->type().dim() > 0) {
ArrayLit* al = eval_array_lit(env, e);
std:
vector<Val> content(al->size());
for (size_t i = 0; i < al->size(); ++i) {
content[i] = eval_val(env, (*al)[i]);
}
Val ret = Val(Vec::a(interpreter, interpreter->newIdent(), content));
if (al->dims() > 1 || al->min(0) != 1) {
std::vector<Val> idxs(al->dims() * 2);
for (size_t i = 0; i < al->dims(); ++i) {
idxs[i * 2] = Val(al->min(i));
idxs[i * 2 + 1] = Val(al->max(i));
}
Vec* ranges = Vec::a(interpreter, interpreter->newIdent(), idxs);
ret = Val(Vec::a(interpreter, interpreter->newIdent(), {ret, Val(ranges)}, true));
}
return ret;
}
if (e->type().is_set()) {
// TODO: Might not be int
IntSetVal* sl = eval_intset(env, e);
std::vector<Val> vranges(sl->size() * 2);
for (size_t i = 0; i < sl->size(); ++i) {
vranges[i * 2] = Val::fromIntVal(sl->min(i));
vranges[i * 2 + 1] = Val::fromIntVal(sl->max(i));
}
return Val(Vec::a(interpreter, interpreter->newIdent(), vranges));
}
if (e->type().isbool()) {
bool b(eval_bool(env, e));
return Val(b);
}
if (e->type().isfloat()) {
throw InternalError("Unsupported Type");
}
IntVal iv(eval_int(env, e));
return Val::fromIntVal(iv);
}
void MznSolver::flatten(const std::string& filename, const std::string& modelName) {
if (!FileUtils::file_exists(filename)) {
std::cerr << "Error: cannot open assembly file '" << filename << "'." << std::endl;
return;
}
bool verbose = flag_compiler_verbose;
std::ifstream t(filename, std::ifstream::in);
std::string line;
std::string mzn_defs;
while (std::getline(t, line)) {
if (line == "@@@@@@@@@@") {
break;
}
mzn_defs += line + "\n";
}
std::string assembly;
while (std::getline(t, line)) {
assembly += line + "\n";
}
if (assembly.empty()) {
std::swap(mzn_defs, assembly);
}
// Parse assembly file
int max_glob;
std::tie(max_glob, bs) = parse_mza(assembly);
if (verbose) {
std::cerr << "Disassembled code:\n";
int b_count = 0;
for (auto& b : bs) {
for (int i = 0; i < BytecodeProc::MAX_MODE; i++) {
if (b.mode[i].size() > 0) {
std::cerr << ":" << b.name << ":" << BytecodeProc::mode_to_string[i] << " %% " << b_count
<< "\n";
std::cerr << b.mode[i].toString(bs);
}
}
b_count++;
}
std::cerr << "\n";
}
for (size_t i = 0; i < bs.size(); i++) {
resolve_call.insert({bs[i].name, {i, bs[i].nargs}});
}
// The main procedure is the last one in the file
BytecodeFrame frame(bs.back().mode[BytecodeProc::ROOT], bs.size() - 1, BytecodeProc::ROOT);
interpreter = new Interpreter(bs, frame, max_glob);
// Parse and add data
if (!mzn_defs.empty()) {
GCLock lock;
std::vector<SyntaxError> syntaxErrors;
Model* m = parse(in_out_defs, {}, data_files, mzn_defs, file,
{solver_configs.mznlibDir() + "/std"}, false, false, verbose, std::cerr);
if (!m) {
throw Error("Unable to parse MiniZinc Declarations");
}
assert(!in_out_defs.model());
in_out_defs.model(m);
long long int idn = 0;
std::vector<TypeError> typeErrors;
typecheck(in_out_defs, in_out_defs.model(), typeErrors, false, true, false);
registerBuiltins(in_out_defs);
if (typeErrors.size() > 0) {
for (unsigned int i = 0; i < typeErrors.size(); i++) {
if (flag_verbose) log << std::endl;
log << typeErrors[i].loc() << ":" << std::endl;
log << typeErrors[i].what() << ": " << typeErrors[i].msg() << std::endl;
}
throw Error("multiple type errors");
}
if (verbose) {
std::cerr << "Input Data:\n";
}
for (VarDeclIterator it = in_out_defs.model()->begin_vardecls();
it != in_out_defs.model()->end_vardecls(); ++it) {
if (it->removed()) {
continue;
}
GCLock lock;
Env& env = in_out_defs;
Model* m = in_out_defs.model();
VarDecl* vd = it->e();
if (vd->type().isann()) {
continue;
}
assert(vd->e());
Call* global_ann = vd->ann().getCall(constants().ann.global_register);
if (!global_ann) {
throw TypeError(env.envi(), vd->loc(), "Unkown global " + vd->id()->str().str());
}
IntVal global = eval_int(env.envi(), global_ann->arg(0));
if (vd->type().dim() > 0) {
ArrayLit* al = eval_array_lit(env.envi(), vd->e());
checkIndexSets(env.envi(), vd, al);
}
Val v = eval_val(env.envi(), vd->e());
interpreter->globals.assign(interpreter, global.toInt(), v);
if (verbose) {
std::cerr << " - R" << global << "(" << vd->id()->str() << ") = " << v.toString()
<< std::endl;
}
}
}
// Start interpreter
Timer tm01;
if (verbose) {
std::cerr << "Run:\n";
}
bool delayed = true;
interpreter->run();
while (interpreter->status() == Interpreter::ROGER && delayed) {
delayed = interpreter->runDelayed();
}
flatten_time = tm01.s();
// FIXME: Global registers should not be removed, merely hidden
// interpreter->clear_globals();
if (verbose) {
std::cerr << "Status: " << Interpreter::status_to_string[interpreter->status()] << std::endl;
if (interpreter->status() == Interpreter::ROGER) {
interpreter->dumpState(std::cerr);
}
std::cerr << "----------------" << std::endl;
}
switch (interpreter->status()) {
case Interpreter::ROGER:
interpreter_status = SolverInstance::UNKNOWN;
break;
case Interpreter::ERROR:
case Interpreter::ABORTED:
interpreter_status = SolverInstance::ERROR;
break;
case Interpreter::INCONSISTENT:
interpreter_status = SolverInstance::UNSAT;
break;
}
}
std::pair<SolverInstance::Status, std::string> MznSolver::solve() {
SolverInstance::Status status = getSI()->solve();
std::string sol = printSolution(status);
if (si_opt->printStatistics) getSI()->printStatistics();
/* if (flag_statistics) */
/* getSI()->getSolns2Out()->printStatistics(log); */
return {status, sol};
}
void MznSolver::printStatistics() { // from flattener too? TODO
if (si) getSI()->printStatistics();
}
std::string MznSolver::printSolution(SolverInstance::Status s) {
std::stringstream ss;
switch (s) {
case SolverInstance::SAT:
case SolverInstance::OPT: {
if (output) {
Val vec = output->arg(0);
ss << (output_dict ? '{' : '[');
for (int i = 0; i < vec.size(); ++i) {
Val v = vec[i];
if (i > 0) {
ss << ", ";
}
if (v.isVar()) {
if (output_dict) {
ss << "\"" << v.timestamp() << "\""
<< ": ";
}
v = Val::follow_alias(v);
if (v.isVar()) {
ss << si->getSolutionValue(v.toVar()).toString();
} else {
ss << v.toString();
}
} else {
assert(!output_dict);
ss << v.toString();
}
}
ss << (output_dict ? '}' : ']') << std::endl;
// Set output for sol() builtin
interpreter->solutions.clear();
for (int i = 0; i < vec.size(); ++i) {
Val v = Val::follow_alias(vec[i]);
if (v.isVar()) {
interpreter->solutions.emplace(v.timestamp(), si->getSolutionValue(v.toVar()));
}
}
} else {
interpreter->solutions.clear();
bool first = true;
ss << "{" << std::endl;
for (Variable* v = interpreter->root()->next(); v != interpreter->root(); v = v->next()) {
Val va = Val::follow_alias(Val(v));
if (va.isVar()) {
int timestamp = va.timestamp();
if (timestamp >= 0) {
/// TODO: all timestamps >= 0 ?
if (!first) {
ss << "," << std::endl;
}
ss << " \"" << timestamp << "\""
<< ": ";
Val sv = si->getSolutionValue(va.toVar());
ss << sv.toString();
first = false;
// Set output for sol() builtin
interpreter->solutions.emplace(timestamp, sv);
}
}
}
ss << std::endl << "}" << std::endl;
}
} break;
case SolverInstance::UNSAT:
ss << "=====UNSATISFIABLE=====" << std::endl;
break;
case SolverInstance::UNKNOWN:
ss << "=====UNKNOWN=====" << std::endl;
break;
case SolverInstance::ERROR:
default:
ss << "=====ERROR=====" << std::endl;
break;
}
return ss.str();
}
std::pair<SolverInstance::Status, std::string> MznSolver::run() {
using namespace std::chrono;
steady_clock::time_point startTime = steady_clock::now();
if (!ifMzn2Fzn() && flag_overall_time_limit != 0) {
steady_clock::time_point afterFlattening = steady_clock::now();
milliseconds passed = duration_cast<milliseconds>(afterFlattening - startTime);
milliseconds time_limit(flag_overall_time_limit);
if (passed > time_limit) {
s2out.evalStatus(getFltStatus());
return {SolverInstance::UNKNOWN, ""};
}
int time_left = (time_limit - passed).count();
std::vector<std::string> timeoutArgs(2);
timeoutArgs[0] = "--solver-time-limit";
std::ostringstream oss;
oss << time_left;
timeoutArgs[1] = oss.str();
int i = 0;
sf->processOption(si_opt, i, timeoutArgs);
}
if (flag_statistics) {
os << "%%%mzn-stat: flatTime=" << flatten_time << endl;
}
if (getFltStatus() != SolverInstance::UNKNOWN) {
if (ifMzn2Fzn()) {
GCLock lock;
std::ofstream os(file.substr(0, file.size() - 4) + std::string(".fzn"));
Printer p(os, 0, true);
auto c = new Call(Location().introduce(), constants().ids.bool_eq,
{constants().lit_true, constants().lit_false});
auto ci = new ConstraintI(Location().introduce(), c);
p.print(ci);
p.print(SolveI::sat(Location().introduce()));
}
return {getFltStatus(), printSolution(getFltStatus())};
}
if (!si) { // only then
// GCLock lock; // better locally, to enable cleanup after ProcessFlt()
addSolverInterface();
}
addDefinitions();
if (ifMzn2Fzn()) {
assert(dynamic_cast<FZNSolverInstance*>(si));
// Print flatzinc to file
static_cast<FZNSolverInstance*>(si)->printFlatZincToFile(file.substr(0, file.size() - 4) +
std::string(".fzn"));
static_cast<FZNSolverInstance*>(si)->printOutputToFile(file.substr(0, file.size() - 4) +
std::string(".ozn"));
if (flag_statistics) {
si->printStatistics();
}
return {SolverInstance::UNKNOWN, ""};
}
return solve();
}
void MznSolver::addDefinitions() {
/// TODO: currently this will always add all variables and constraints
Variable* v_start;
size_t c_start;
std::tie(v_start, c_start) = def_stack.back();
std::set<int> output_vars;
Variable* root = interpreter->root();
auto fzn = dynamic_cast<FZNSolverInstance*>(si);
if (v_start == nullptr) {
v_start = root;
for (Constraint* c : v_start->definitions()) {
if (interpreter->_procs[c->pred()].name == "output_this") {
assert(c->size() == 1);
output = c;
Val arg = c->arg(0);
assert(arg.isVec());
for (int i = 0; i < arg.size(); ++i) {
Val real = Val::follow_alias(Val(arg[i]));
if (real.isVar()) {
output_vars.insert(real.toVar()->timestamp());
}
}
break;
}
}
}
// Add all new variables
for (Variable* v = v_start->next(); v != interpreter->root(); v = v->next()) {
// Only add variables that are not aliased
if (Val(v) == Val::follow_alias(Val(v))) {
si->addVariable(v,
output != nullptr || output_vars.find(v->timestamp()) != output_vars.end());
}
}
// Add defining constraints
for (Variable* v = v_start->next(); v != interpreter->root(); v = v->next()) {
for (Constraint* c : v->definitions()) {
si->addConstraint(interpreter->_procs, c);
}
}
// Add new root level constraints
for (size_t i = c_start; i < root->definitions().size(); ++i) {
Constraint* c = root->definitions()[i];
if (interpreter->_procs[c->pred()].name == "output_this") {
if (fzn) {
assert(c->size() == 1);
fzn->outputArray(c->arg(0).toVec());
}
continue;
} else {
si->addConstraint(interpreter->_procs, c);
}
}
// Force output statement
if (output == nullptr && fzn != nullptr) {
fzn->outputDict(interpreter->root());
}
// TODO: Domain Changes
def_stack[def_stack.size() - 1] = {root->prev(), root->definitions().size()};
}
void MznSolver::pushToSolver() {
assert(interpreter->trail.len() > 0);
if (auto tsi = dynamic_cast<TrailableSolverInstance*>(si)) {
assert(interpreter->trail.len() == tsi->states() + 1);
tsi->restart();
addDefinitions();
def_stack.push_back(def_stack.back());
tsi->pushState();
} else {
assert(false);
}
}
void MznSolver::popFromSolver() {
if (auto tsi = dynamic_cast<TrailableSolverInstance*>(si)) {
assert(interpreter->trail.len() == tsi->states() - 1);
tsi->restart();
tsi->popState();
def_stack.pop_back();
} else {
assert(false);
delete si;
si = nullptr;
// TODO: do we need to reconstruct the model here or can we trust there is a push before
// solving
}
}