1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.

112 lines
4.2 KiB
MiniZinc

/*%-----------------------------------------------------------------------------%
% Domain encodings
%-----------------------------------------------------------------------------%
*/
% Linear equality encoding
% Single variable: x = d <-> x_eq_d[d]
predicate equality_encoding(var int: x, array[int] of var int: x_eq_d) =
x in index_set(x_eq_d)
/\
sum(d in dom(x))( x_eq_d[d] ) = 1
/\
sum(d in dom(x))( d * x_eq_d[d] ) = x
/\
% my_trace( "eq_enc: \(x), index_set(pp)=" ++ show(index_set( x_eq_d )) ++ "\n" ) /\
if fPostprocessDomains then
equality_encoding__POST(x, x_eq_d)
else true endif
;
% Two variables: x = d /\ y = e <-> x_eq_d[d] /\ y_eq_e[e] /\ xy_eq_de[d, e]
predicate equality_encoding(var int: x, var int: y,
array[int] of var int: x_eq_d,
array[int] of var int: y_eq_e,
array[int, int] of var int: xy_eq_de
) =
x in index_set(x_eq_d) /\
y in index_set(y_eq_e) /\
index_set(x_eq_d) == index_set_1of2(xy_eq_de) /\
index_set(y_eq_e) == index_set_2of2(xy_eq_de) /\
sum(d in dom(x), e in dom(y))( xy_eq_de[d, e] ) = 1
/\
forall(d in dom(x)) (sum(e in dom(y))( xy_eq_de[d, e] ) = x_eq_d[d])
/\
forall(e in dom(y)) (sum(d in dom(x))( xy_eq_de[d, e] ) = y_eq_e[e])
;
% Array of variables: x[i] = d <-> x_eq_d[i,d]
predicate equality_encoding(array[int] of var int: x,
array[int, int] of var int: x_eq_d) =
forall(i in index_set(x))(
x[i] in index_set_2of2(x_eq_d)
/\
sum(d in index_set_2of2(x_eq_d))( x_eq_d[i,d] ) = 1
/\
sum(d in index_set_2of2(x_eq_d))( d * x_eq_d[i,d] ) = x[i]
);
function var int: eq_new_var(var int: x, int: i) ::promise_total =
if i in dom(x) then
let {
var 0..1: xi;
} in xi
else 0 endif;
function array[int] of var int: eq_encode(var int: x) ::promise_total =
let {
array[int] of var int: y = array1d(lb(x)..ub(x),[eq_new_var(x,i) | i in lb(x)..ub(x)]);
constraint equality_encoding(x,y);
% constraint
% if card(dom(x))>0 then
% my_trace(" eq_encode: dom(\(x)) = " ++ show(dom(x)) ++ ", card( dom(\(x)) ) = " ++ show(card(dom(x))) ++ "\n")
% else true endif;
%% constraint assert(card(dom(x))>1, " eq_encode: card(dom(\(x))) == " ++ show(card(dom(x))));
} in y;
function array[int] of int: eq_encode(int: x) ::promise_total =
array1d(lb(x)..ub(x),[ if i=x then 1 else 0 endif | i in lb(x)..ub(x)]);
%%% The same for 2 variables:
function var int: eq_new_var(var int: x, int: i, var int: y, int: j) ::promise_total =
if i in dom(x) /\ j in dom(y) then
let {
var 0..1: xi;
} in xi
else 0 endif;
function array[int, int] of var int: eq_encode(var int: x, var int: y) ::promise_total =
let {
array[int] of var int: pX = eq_encode(x),
array[int] of var int: pY = eq_encode(y),
array[int, int] of var int: pp = array2d(index_set(pX), index_set(pY),
[eq_new_var(x,i,y,j) | i in index_set(pX), j in index_set(pY)]);
constraint equality_encoding(x, y, pX, pY, pp);
} in pp;
function array[int, int] of int: eq_encode(int: x, int: y) ::promise_total =
% let {
% constraint if card(dom(x))*card(dom(y))>200 then
% my_trace(" eq_encode: dom(\(x)) = " ++ show(dom(x)) ++ ", dom(\(y)) = " ++ show(dom(y)) ++ "\n")
% else true endif;
% } in
array2d(lb(x)..ub(x), lb(y)..ub(y),
[if i==x /\ j==y then 1 else 0 endif | i in lb(x)..ub(x), j in lb(y)..ub(y)]);
function array[int,int] of var int: eq_encode(array[int] of var int: x) ::promise_total =
let {
array[index_set(x),lb_array(x)..ub_array(x)] of var int: y =
array2d(index_set(x),lb_array(x)..ub_array(x),
[ let {
array[int] of var int: xi = eq_encode(x[i])
} in if j in index_set(xi) then xi[j] else 0 endif
| i in index_set(x), j in lb_array(x)..ub_array(x)]
)
} in y;
function array[int,int] of int: eq_encode(array[int] of int: x) ::promise_total =
array2d(index_set(x),lb_array(x)..ub_array(x),[ if j=x[i] then 1 else 0 endif | i in index_set(x), j in lb_array(x)..ub_array(x)]);
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%