1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
on-restart-benchmarks/lib/chain_compressor.cpp
Jip J. Dekker f2a1c4e389 Squashed 'software/mza/' content from commit f970a59b17
git-subtree-dir: software/mza
git-subtree-split: f970a59b177c13ca3dd8aaef8cc6681d83b7e813
2021-07-11 16:34:30 +10:00

532 lines
18 KiB
C++

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Jip J. Dekker <jip.dekker@monash.edu>
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <minizinc/ast.hh>
#include <minizinc/astiterator.hh>
#include <minizinc/chain_compressor.hh>
#include <minizinc/flatten_internal.hh>
namespace MiniZinc {
void ChainCompressor::removeItem(Item* i) {
CollectDecls cd(env.vo, deletedVarDecls, i);
if (auto ci = i->dyn_cast<ConstraintI>()) {
topDown(cd, ci->e());
} else if (auto vdi = i->dyn_cast<VarDeclI>()) {
topDown(cd, vdi->e());
} else {
assert(false); // CURRENTLY NOT SUPPORTED
}
env.flat_removeItem(i);
}
int ChainCompressor::addItem(Item* i) {
env.flat_addItem(i);
int item_idx = env.flat()->size() - 1;
trackItem(i);
return item_idx;
}
void ChainCompressor::updateCount() {
for (auto it = this->items.begin(); it != items.end();) {
if (it->second->removed()) {
it = this->items.erase(it);
} else {
++it;
}
}
}
void ChainCompressor::replaceCallArgument(Item* i, Call* c, unsigned int n, Expression* e) {
CollectDecls cd(env.vo, deletedVarDecls, i);
topDown(cd, c->arg(n));
c->arg(n, e);
CollectOccurrencesE ce(env.vo, i);
topDown(ce, e);
}
bool ImpCompressor::trackItem(Item* i) {
if (i->removed()) {
return false;
}
if (auto ci = i->dyn_cast<ConstraintI>()) {
if (auto c = ci->e()->dyn_cast<Call>()) {
// clause([y], [x]); i.e. x -> y
if (c->id() == constants().ids.clause) {
auto positive = c->arg(0)->cast<ArrayLit>();
auto negative = c->arg(1)->cast<ArrayLit>();
if (positive->length() == 1 && negative->length() == 1) {
auto var = (*negative)[0]->cast<Id>();
storeItem(var->decl(), i);
return true;
}
} else if (c->id() == "mzn_reverse_map_var") {
auto control = c->arg(0)->cast<Id>();
assert(control->type().isvarbool());
storeItem(control->decl(), i);
return true;
// pred_imp(..., b); i.e. b -> pred(...)
} else if (c->id().endsWith("_imp")) {
auto control = c->arg(c->n_args() - 1)->cast<Id>();
assert(control->type().isvarbool());
storeItem(control->decl(), i);
return true;
}
}
} else if (auto vdi = i->dyn_cast<VarDeclI>()) {
if (vdi->e()->type().isvarbool() && vdi->e() && vdi->e()->e()) {
if (auto c = vdi->e()->e()->dyn_cast<Call>()) {
// x = forall([y,z,...]); potentially: x -> (y /\ z /\ ...)
if (c->id() == constants().ids.forall) {
storeItem(vdi->e(), i);
return true;
// x ::ctx_pos = pred(...); potentially: pred_imp(..., x); i.e. x -> pred(...)
} else if (env.fopts.enable_imp && vdi->e()->ann().contains(constants().ctx.pos)) {
GCLock lock;
auto cid = env.halfReifyId(c->id());
std::vector<Type> args;
args.reserve(c->n_args() + 1);
for (int j = 0; j < c->n_args(); ++j) {
args.push_back(c->arg(j)->type());
}
args.push_back(Type::varbool());
FunctionI* decl = env.model->matchFn(env, cid, args, false);
if (decl) {
storeItem(vdi->e(), i);
return true;
}
}
}
}
}
return false;
}
void ImpCompressor::compress() {
for (auto it = items.begin(); it != items.end();) {
VarDecl* lhs = nullptr;
VarDecl* rhs = nullptr;
// Check if compression is possible
if (auto ci = it->second->dyn_cast<ConstraintI>()) {
auto c = ci->e()->cast<Call>();
if (c->id() == constants().ids.clause) {
auto positive = c->arg(0)->cast<ArrayLit>();
auto var = (*positive)[0]->cast<Id>();
int occurrences = env.vo.usages(var->decl());
unsigned long lhs_occurences = count(var->decl());
bool output_var = var->decl()->ann().contains(constants().ann.output_var);
// Compress if:
// - There is one occurrence on the RHS of a clause and the others are on the LHS of a
// clause
// - There is one occurrence on the RHS of a clause, that Id is a reified forall that has no
// other occurrences
// - There is one occurrence on the RHS of a clause, that Id is a reification in a positive
// context, and all other occurrences are on the LHS of a clause
bool compress = !output_var && lhs_occurences > 0;
if (var->decl()->e() && var->decl()->e()->dyn_cast<Call>()) {
auto call = var->decl()->e()->cast<Call>();
if (call->id() == constants().ids.forall) {
compress = compress && (occurrences == 1 && lhs_occurences == 1);
} else {
compress = compress && (occurrences == lhs_occurences);
}
} else {
compress = compress && (occurrences == lhs_occurences + 1);
}
if (compress) {
rhs = var->decl();
auto negative = c->arg(1)->cast<ArrayLit>();
lhs = (*negative)[0]->cast<Id>()->decl();
if (lhs == rhs) {
continue;
}
}
// TODO: Detect equivalences for output variables.
}
}
if (lhs && rhs) {
assert(count(rhs) > 0);
auto range = find(rhs);
for (auto match = range.first; match != range.second;) {
bool succes = compressItem(match->second, lhs);
assert(succes);
env.n_imp_del++;
match = items.erase(match);
}
assert(!rhs->ann().contains(constants().ann.output_var));
removeItem(it->second);
it = items.erase(it);
} else {
++it;
}
}
}
bool ImpCompressor::compressItem(Item* i, VarDecl* newLHS) {
GCLock lock;
if (auto ci = i->dyn_cast<ConstraintI>()) {
auto c = ci->e()->cast<Call>();
// Given (x -> y) /\ (y -> z), produce x -> z
if (c->id() == constants().ids.clause) {
auto positive = c->arg(0)->cast<ArrayLit>();
auto rhs = (*positive)[0]->cast<Id>();
if (rhs->decl() != newLHS) {
ConstraintI* nci = constructClause(positive, newLHS->id());
boolConstraints.push_back(addItem(nci));
}
removeItem(i);
return true;
// Given (x -> y) /\ (y -> pred(...)), produce x -> pred(...)
} else if (c->id() == "mzn_reverse_map_var") {
return true;
} else if (c->id().endsWith("_imp")) {
replaceCallArgument(i, c, c->n_args() - 1, newLHS->id());
trackItem(i);
return true;
}
} else if (auto vdi = i->dyn_cast<VarDeclI>()) {
auto c = vdi->e()->e()->dyn_cast<Call>();
// Given: (x -> y) /\ (y -> (a /\ b /\ ...)), produce (x -> a) /\ (x -> b) /\ ...
if (c->id() == constants().ids.forall) {
auto exprs = c->arg(0)->cast<ArrayLit>();
for (int j = 0; j < exprs->size(); ++j) {
auto rhs = (*exprs)[j]->cast<Id>();
if (rhs->decl() != newLHS) {
ConstraintI* nci = constructClause(rhs, newLHS->id());
boolConstraints.push_back(addItem(nci));
}
}
return true;
// x ::ctx_pos = pred(...); potentially: pred_imp(..., x); i.e. x -> pred(...)
} else if (vdi->e()->ann().contains(constants().ctx.pos)) {
ConstraintI* nci = constructHalfReif(c, newLHS->id());
assert(nci);
addItem(nci);
return true;
}
}
return false;
}
ConstraintI* ImpCompressor::constructClause(Expression* pos, Expression* neg) {
assert(GC::locked());
std::vector<Expression*> args(2);
if (pos->dyn_cast<ArrayLit>()) {
args[0] = pos;
} else {
assert(neg->type().isbool());
std::vector<Expression*> eVec(1);
eVec[0] = pos;
args[0] = new ArrayLit(pos->loc().introduce(), eVec);
args[0]->type(Type::varbool(1));
}
if (neg->dyn_cast<ArrayLit>()) {
args[1] = neg;
} else {
assert(neg->type().isbool());
std::vector<Expression*> eVec(1);
eVec[0] = neg;
args[1] = new ArrayLit(neg->loc().introduce(), eVec);
args[1]->type(Type::varbool(1));
}
// NEVER CREATE (a -> a)
assert((*args[0]->dyn_cast<ArrayLit>())[0]->dyn_cast<Id>()->decl() !=
(*args[1]->dyn_cast<ArrayLit>())[0]->dyn_cast<Id>()->decl());
auto nc = new Call(MiniZinc::Location().introduce(), constants().ids.clause, args);
nc->type(Type::varbool());
nc->decl(env.model->matchFn(env, nc, false));
assert(nc->decl());
return new ConstraintI(MiniZinc::Location().introduce(), nc);
}
ConstraintI* ImpCompressor::constructHalfReif(Call* call, Id* control) {
assert(env.fopts.enable_imp);
assert(GC::locked());
auto cid = env.halfReifyId(call->id());
std::vector<Expression*> args(call->n_args());
for (int i = 0; i < call->n_args(); ++i) {
args[i] = call->arg(i);
}
args.push_back(control);
FunctionI* decl = env.model->matchFn(env, cid, args, false);
if (decl) {
auto nc = new Call(call->loc().introduce(), cid, args);
nc->decl(decl);
nc->type(Type::varbool());
return new ConstraintI(call->loc().introduce(), nc);
}
return nullptr;
}
bool LECompressor::trackItem(Item* i) {
if (i->removed()) {
return false;
}
bool added = false;
if (auto ci = i->dyn_cast<ConstraintI>()) {
if (auto call = ci->e()->dyn_cast<Call>()) {
// {int,float}_lin_le([c1,c2,...], [x, y,...], 0);
if (call->id() == constants().ids.int_.lin_le ||
call->id() == constants().ids.float_.lin_le) {
auto as = follow_id(call->arg(0))->cast<ArrayLit>();
auto bs = follow_id(call->arg(1))->cast<ArrayLit>();
assert(as->size() == bs->size());
for (int j = 0; j < as->size(); ++j) {
if (as->type().isintarray()) {
if (follow_id((*as)[j])->cast<IntLit>()->v() > IntVal(0)) {
// Check if left hand side is a variable (could be constant)
if (auto decl = follow_id_to_decl((*bs)[j])->dyn_cast<VarDecl>()) {
storeItem(decl, i);
added = true;
}
}
} else {
if (follow_id((*as)[j])->cast<FloatLit>()->v() > FloatVal(0)) {
// Check if left hand side is a variable (could be constant)
if (auto decl = follow_id_to_decl((*bs)[j])->dyn_cast<VarDecl>()) {
storeItem(decl, i);
added = true;
}
}
}
}
}
assert(call->id() != constants().ids.int2float);
}
} else if (auto vdi = i->dyn_cast<VarDeclI>()) {
assert(vdi->e());
if (Expression* vde = vdi->e()->e()) {
if (auto call = vde->dyn_cast<Call>()) {
if (call->id() == constants().ids.int2float) {
if (auto vd = follow_id_to_decl(call->arg(0))->dyn_cast<VarDecl>()) {
auto alias = follow_id_to_decl(vdi->e())->cast<VarDecl>();
aliasMap[vd] = alias;
}
}
}
}
}
return added;
}
void LECompressor::compress() {
for (auto it = items.begin(); it != items.end();) {
VarDecl* lhs = nullptr;
VarDecl* rhs = nullptr;
VarDecl* alias = nullptr;
// Check if compression is possible
if (auto ci = it->second->dyn_cast<ConstraintI>()) {
auto call = ci->e()->cast<Call>();
if (call->id() == constants().ids.int_.lin_le) {
auto as = follow_id(call->arg(0))->cast<ArrayLit>();
auto bs = follow_id(call->arg(1))->cast<ArrayLit>();
auto c = follow_id(call->arg(2))->cast<IntLit>();
if (bs->size() == 2 && c->v() == IntVal(0)) {
auto a0 = follow_id((*as)[0])->cast<IntLit>()->v();
auto a1 = follow_id((*as)[1])->cast<IntLit>()->v();
if (a0 == -a1 && eqBounds((*bs)[0], (*bs)[1])) {
int i = a0 < a1 ? 0 : 1;
if (!(*bs)[i]->isa<Id>()) {
break;
}
auto neg = follow_id_to_decl((*bs)[i])->cast<VarDecl>();
bool output_var = neg->ann().contains(constants().ann.output_var);
int occurrences = env.vo.usages(neg);
unsigned long lhs_occurences = count(neg);
bool compress = !output_var;
auto search = aliasMap.find(neg);
if (search != aliasMap.end()) {
alias = search->second;
int alias_occ = env.vo.usages(alias);
unsigned long alias_lhs_occ = count(alias);
// neg is only allowed to occur:
// - once in the "implication"
// - once in the aliasing
// - on a lhs of other expressions
// alias is only allowed to occur on a lhs of an expression.
compress = compress && (lhs_occurences + alias_lhs_occ > 0) &&
(occurrences == lhs_occurences + 2) && (alias_occ == alias_lhs_occ);
} else {
// neg is only allowed to occur:
// - once in the "implication"
// - on a lhs of other expressions
compress = compress && (lhs_occurences > 0) && (occurrences == lhs_occurences + 1);
}
auto pos = follow_id_to_decl((*bs)[1 - i])->dyn_cast<VarDecl>();
if (pos && compress) {
rhs = neg;
lhs = pos;
assert(lhs != rhs);
}
// TODO: Detect equivalences for output variables.
}
}
}
}
if (lhs && rhs) {
assert(count(rhs) + count(alias) > 0);
auto range = find(rhs);
for (auto match = range.first; match != range.second;) {
LEReplaceVar<IntLit>(match->second, rhs, lhs);
match = items.erase(match);
}
if (alias) {
VarDecl* i2f_lhs;
auto search = aliasMap.find(lhs);
if (search != aliasMap.end()) {
i2f_lhs = search->second;
} else {
// Create new int2float
Call* i2f = new Call(lhs->loc().introduce(), constants().ids.int2float, {lhs->id()});
i2f->decl(env.model->matchFn(env, i2f, false));
assert(i2f->decl());
i2f->type(Type::varfloat());
auto domain = new SetLit(lhs->loc().introduce(), eval_floatset(env, lhs->ti()->domain()));
auto i2f_ti = new TypeInst(lhs->loc().introduce(), Type::varfloat(), domain);
i2f_lhs = new VarDecl(lhs->loc().introduce(), i2f_ti, env.genId(), i2f);
i2f_lhs->type(Type::varfloat());
addItem(new VarDeclI(lhs->loc().introduce(), i2f_lhs));
}
auto arange = find(alias);
for (auto match = arange.first; match != arange.second;) {
LEReplaceVar<FloatLit>(match->second, alias, i2f_lhs);
match = items.erase(match);
}
}
assert(!rhs->ann().contains(constants().ann.output_var));
removeItem(it->second);
env.n_lin_del++;
it = items.erase(it);
} else {
++it;
}
}
}
template <class Lit>
void LECompressor::LEReplaceVar(Item* i, VarDecl* oldVar, VarDecl* newVar) {
typedef typename LinearTraits<Lit>::Val Val;
GCLock lock;
auto ci = i->cast<ConstraintI>();
auto call = ci->e()->cast<Call>();
assert(call->id() == constants().ids.int_.lin_le || call->id() == constants().ids.float_.lin_le);
// Remove old occurrences
CollectDecls cd(env.vo, deletedVarDecls, i);
topDown(cd, ci->e());
ArrayLit* al_c = eval_array_lit(env, call->arg(0));
std::vector<Val> coeffs(al_c->size());
for (int j = 0; j < al_c->size(); j++) {
coeffs[j] = LinearTraits<Lit>::eval(env, (*al_c)[j]);
}
ArrayLit* al_x = eval_array_lit(env, call->arg(1));
std::vector<KeepAlive> x(al_x->size());
for (int j = 0; j < al_x->size(); j++) {
Expression* decl = follow_id_to_decl((*al_x)[j]);
if (decl && decl->cast<VarDecl>() == oldVar) {
x[j] = newVar->id();
} else {
x[j] = (*al_x)[j];
}
}
Val d = LinearTraits<Lit>::eval(env, call->arg(2));
simplify_lin<Lit>(coeffs, x, d);
if (coeffs.empty()) {
env.flat_removeItem(i);
env.n_lin_del++;
return;
} else {
std::vector<Expression*> coeffs_e(coeffs.size());
std::vector<Expression*> x_e(coeffs.size());
for (unsigned int j = 0; j < coeffs.size(); j++) {
coeffs_e[j] = Lit::a(coeffs[j]);
x_e[j] = x[j]();
Expression* decl = follow_id_to_decl(x_e[j]);
if (decl && decl->cast<VarDecl>() == newVar) {
storeItem(newVar, i);
}
}
if (auto arg0 = call->arg(0)->dyn_cast<ArrayLit>()) {
arg0->setVec(coeffs_e);
} else {
auto al_c_new = new ArrayLit(al_c->loc().introduce(), coeffs_e);
al_c_new->type(al_c->type());
call->arg(0, al_c_new);
}
if (auto arg1 = call->arg(1)->dyn_cast<ArrayLit>()) {
arg1->setVec(x_e);
} else {
auto al_x_new = new ArrayLit(al_x->loc().introduce(), x_e);
al_x_new->type(al_x->type());
call->arg(1, al_x_new);
}
call->arg(2, Lit::a(d));
}
// Add new occurences
CollectOccurrencesE ce(env.vo, i);
topDown(ce, ci->e());
}
bool LECompressor::eqBounds(Expression* a, Expression* b) {
// TODO: (To optimise) Check lb(lhs) >= lb(rhs) and enforce ub(lhs) <= ub(rhs)
IntSetVal* dom_a = nullptr;
IntSetVal* dom_b = nullptr;
if (auto a_decl = follow_id_to_decl(a)->dyn_cast<VarDecl>()) {
if (a_decl->ti()->domain()) {
dom_a = eval_intset(env, a_decl->ti()->domain());
}
} else {
assert(a->dyn_cast<IntLit>());
auto a_val = a->cast<IntLit>();
dom_a = IntSetVal::a(a_val->v(), a_val->v());
}
if (auto b_decl = follow_id_to_decl(b)->dyn_cast<VarDecl>()) {
if (b_decl->ti()->domain()) {
dom_b = eval_intset(env, b_decl->ti()->domain());
}
} else {
assert(b->dyn_cast<IntLit>());
auto b_val = b->cast<IntLit>();
dom_b = IntSetVal::a(b_val->v(), b_val->v());
}
return (dom_a && dom_b && (dom_a->min() == dom_b->min()) && (dom_a->max() == dom_b->max())) ||
(!dom_a && !dom_b);
}
} // namespace MiniZinc