Add description for SVM
This commit is contained in:
parent
68e636418a
commit
558fcf084b
@ -1,8 +1,8 @@
|
|||||||
@misc{openData,
|
@misc{openData,
|
||||||
title={Open Database License (ODbL) v1.0},
|
title={Open Database License (ODbL) v1.0},
|
||||||
url={https://opendatacommons.org/licenses/odbl/1.0/},
|
url={https://opendatacommons.org/licenses/odbl/1.0/},
|
||||||
journal={Open Data Commons},
|
journal={Open Data Commons},
|
||||||
year={2018},
|
year={2018},
|
||||||
month={Feb}
|
month={Feb}
|
||||||
}
|
}
|
||||||
@techreport{knn,
|
@techreport{knn,
|
||||||
@ -21,6 +21,14 @@
|
|||||||
year={1995},
|
year={1995},
|
||||||
publisher={Springer}
|
publisher={Springer}
|
||||||
}
|
}
|
||||||
|
@inproceedings{svmnonlinear,
|
||||||
|
title={A training algorithm for optimal margin classifiers},
|
||||||
|
author={Boser, Bernhard E and Guyon, Isabelle M and Vapnik, Vladimir N},
|
||||||
|
booktitle={Proceedings of the fifth annual workshop on Computational learning theory},
|
||||||
|
pages={144--152},
|
||||||
|
year={1992},
|
||||||
|
organization={ACM}
|
||||||
|
}
|
||||||
@article{naivebayes,
|
@article{naivebayes,
|
||||||
title={Idiot's Bayes—not so stupid after all?},
|
title={Idiot's Bayes—not so stupid after all?},
|
||||||
author={Hand, David J and Yu, Keming},
|
author={Hand, David J and Yu, Keming},
|
||||||
|
@ -142,7 +142,15 @@
|
|||||||
|
|
||||||
\paragraph{Support Vector Machine}
|
\paragraph{Support Vector Machine}
|
||||||
|
|
||||||
\cite{svm}
|
(SVM) \cite{svm} has been very successful in many classification tasks. The
|
||||||
|
method is based on finding boundaries between the different classes. The
|
||||||
|
boundaries are defined as functions on the features of the instances. The
|
||||||
|
boundaries are optimized to have the most amount of space between the
|
||||||
|
boundaries and the training instances on both sides. Originally the
|
||||||
|
boundaries where linear functions, but more recent development allows for
|
||||||
|
the training of non-linear boundaries~\cite{svmnonlinear}. Once the training
|
||||||
|
has defined the boundaries new instances are classified according to on
|
||||||
|
which side of the boundary they belong.
|
||||||
|
|
||||||
\paragraph{Random Forest}
|
\paragraph{Random Forest}
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user