1
0

merged some changes

This commit is contained in:
Silver-T 2018-05-22 19:01:41 +10:00
commit b6892721e1
4 changed files with 62 additions and 11 deletions

View File

@ -56,11 +56,9 @@ def gen_data(w_path, n_w_path):
print("ERROR: Data may not be completely saved")
def __main__():
if __name__ == "__main__":
# Paths to the Waldo images
waldo_path = 'waldo_data/64/waldo'
n_waldo_path = 'waldo_data/64/notwaldo'
gen_data(waldo_path, n_waldo_path)
__main__()

View File

@ -0,0 +1,50 @@
class ImageClassifier:
"""Class to create an ImageClassifier from a regular classifier with 5
methods that are common amongst classifiers.
"""
def __init__(self, clf, *args, **kwargs):
self.clf = clf(*args, **kwargs)
def fit(self, X, *args, **kwargs):
X = X.reshape((len(X), -1))
return self.clf.fit(X, *args, **kwargs)
def predict(self, X, *args, **kwargs):
X = X.reshape((len(X), -1))
return self.clf.predict(X, *args, **kwargs)
def score(self, X, *args, **kwargs):
X = X.reshape((len(X), -1))
return self.clf.score(X, *args, **kwargs)
def get_params(self, *args, **kwargs):
return self.clf.get_params(*args, **kwargs)
def set_params(self, **params):
return self.set_params(**params)
if __name__ == '__main__':
# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics
# The digits dataset
digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images
# Create a classifier: a support vector classifier
classifier = ImageClassifier(svm.SVC, gamma=0.001)
# We learn the digits on the first half of the digits
classifier.fit(data[:n_samples // 2], digits.target[:n_samples // 2])
# Now predict the value of the digit on the second half:
expected = digits.target[n_samples // 2:]
predicted = classifier.predict(data[n_samples // 2:])
print("Classification report for classifier %s:\n%s\n"
% (classifier, metrics.classification_report(expected, predicted)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))

View File

@ -8,11 +8,12 @@ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
from keras.layers import Dense, Dropout, Activation, Flatten, Input
from keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.utils import np_utils
from sklearn import svm, tree, naive_bayes, ensemble
from _image_classifier import ImageClassifier
from keras.optimizers import Adadelta
from keras.callbacks import ModelCheckpoint
from keras import backend as K
K.set_image_dim_ordering('th')
np.random.seed(7)
@ -58,6 +59,10 @@ lbl_test = np.load('Waldo_test_lbl.npy')
## Define model
model = FCN()
svm_iclf = ImageClassifier(svm.SVC)
tree_iclf = ImageClassifier(tree.DecisionTreeClassifier)
naive_bayes_iclf = ImageClassifier(naive_bayes.GaussianNBd)
ensemble_iclf = ImageClassifier(ensemble.RandomForestClassifier)
## Define training parameters
epochs = 20 # an epoch is one forward pass and back propogation of all training data

View File

@ -47,10 +47,9 @@ f(1,0,0) & = & 1\\
\text{otherwise }f(\_,\_,\_) & = & 0
\end{eqnarray*}
\begin{figure}[H]
\includegraphics[scale=0.55]{plots}
\begin{figure}[ht]
\includegraphics[scale=0.6]{plots}
\centering
\captionsetup{width=0.80\textwidth}
\caption{Plots of the execution of the cellular automata with the different
updating methods. From top-left to top-right: Synchronous, Random
Independent, Random Order. From bottom-left to bottom-right: Clocked,
@ -131,10 +130,9 @@ simulate the system at varying densities between 0\% and 20\% and use
the graphs showing the energy released from the system over time to
gauge how where the runaway reaction occurs.
\begin{figure}[H]
\begin{figure}[ht]
\includegraphics[scale=0.70]{plots2}
\centering
\captionsetup{width=0.80\textwidth}
\caption{Plots of energy released over time. Each plot corresponds a
different density: 0\%, 5\%, 8\%, 10\%, 11\%, 12\%, 13\%, 15\%, 17\% and 20\%}
\label{fig:plot2}