merged some changes
This commit is contained in:
commit
b6892721e1
@ -56,11 +56,9 @@ def gen_data(w_path, n_w_path):
|
||||
print("ERROR: Data may not be completely saved")
|
||||
|
||||
|
||||
def __main__():
|
||||
if __name__ == "__main__":
|
||||
# Paths to the Waldo images
|
||||
waldo_path = 'waldo_data/64/waldo'
|
||||
n_waldo_path = 'waldo_data/64/notwaldo'
|
||||
|
||||
gen_data(waldo_path, n_waldo_path)
|
||||
|
||||
__main__()
|
50
mini_proj/_image_classifier.py
Normal file
50
mini_proj/_image_classifier.py
Normal file
@ -0,0 +1,50 @@
|
||||
class ImageClassifier:
|
||||
"""Class to create an ImageClassifier from a regular classifier with 5
|
||||
methods that are common amongst classifiers.
|
||||
"""
|
||||
|
||||
def __init__(self, clf, *args, **kwargs):
|
||||
self.clf = clf(*args, **kwargs)
|
||||
|
||||
def fit(self, X, *args, **kwargs):
|
||||
X = X.reshape((len(X), -1))
|
||||
return self.clf.fit(X, *args, **kwargs)
|
||||
|
||||
def predict(self, X, *args, **kwargs):
|
||||
X = X.reshape((len(X), -1))
|
||||
return self.clf.predict(X, *args, **kwargs)
|
||||
|
||||
def score(self, X, *args, **kwargs):
|
||||
X = X.reshape((len(X), -1))
|
||||
return self.clf.score(X, *args, **kwargs)
|
||||
|
||||
def get_params(self, *args, **kwargs):
|
||||
return self.clf.get_params(*args, **kwargs)
|
||||
|
||||
def set_params(self, **params):
|
||||
return self.set_params(**params)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Import datasets, classifiers and performance metrics
|
||||
from sklearn import datasets, svm, metrics
|
||||
|
||||
# The digits dataset
|
||||
digits = datasets.load_digits()
|
||||
|
||||
n_samples = len(digits.images)
|
||||
data = digits.images
|
||||
|
||||
# Create a classifier: a support vector classifier
|
||||
classifier = ImageClassifier(svm.SVC, gamma=0.001)
|
||||
|
||||
# We learn the digits on the first half of the digits
|
||||
classifier.fit(data[:n_samples // 2], digits.target[:n_samples // 2])
|
||||
|
||||
# Now predict the value of the digit on the second half:
|
||||
expected = digits.target[n_samples // 2:]
|
||||
predicted = classifier.predict(data[n_samples // 2:])
|
||||
|
||||
print("Classification report for classifier %s:\n%s\n"
|
||||
% (classifier, metrics.classification_report(expected, predicted)))
|
||||
print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))
|
@ -8,11 +8,12 @@ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
from keras.layers import Dense, Dropout, Activation, Flatten, Input
|
||||
from keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D
|
||||
from keras.models import Model
|
||||
from keras.layers.normalization import BatchNormalization
|
||||
from keras.utils import np_utils
|
||||
|
||||
from sklearn import svm, tree, naive_bayes, ensemble
|
||||
from _image_classifier import ImageClassifier
|
||||
|
||||
from keras.optimizers import Adadelta
|
||||
from keras.callbacks import ModelCheckpoint
|
||||
|
||||
from keras import backend as K
|
||||
K.set_image_dim_ordering('th')
|
||||
np.random.seed(7)
|
||||
@ -58,6 +59,10 @@ lbl_test = np.load('Waldo_test_lbl.npy')
|
||||
|
||||
## Define model
|
||||
model = FCN()
|
||||
svm_iclf = ImageClassifier(svm.SVC)
|
||||
tree_iclf = ImageClassifier(tree.DecisionTreeClassifier)
|
||||
naive_bayes_iclf = ImageClassifier(naive_bayes.GaussianNBd)
|
||||
ensemble_iclf = ImageClassifier(ensemble.RandomForestClassifier)
|
||||
|
||||
## Define training parameters
|
||||
epochs = 20 # an epoch is one forward pass and back propogation of all training data
|
||||
|
@ -47,10 +47,9 @@ f(1,0,0) & = & 1\\
|
||||
\text{otherwise }f(\_,\_,\_) & = & 0
|
||||
\end{eqnarray*}
|
||||
|
||||
\begin{figure}[H]
|
||||
\includegraphics[scale=0.55]{plots}
|
||||
\begin{figure}[ht]
|
||||
\includegraphics[scale=0.6]{plots}
|
||||
\centering
|
||||
\captionsetup{width=0.80\textwidth}
|
||||
\caption{Plots of the execution of the cellular automata with the different
|
||||
updating methods. From top-left to top-right: Synchronous, Random
|
||||
Independent, Random Order. From bottom-left to bottom-right: Clocked,
|
||||
@ -131,10 +130,9 @@ simulate the system at varying densities between 0\% and 20\% and use
|
||||
the graphs showing the energy released from the system over time to
|
||||
gauge how where the runaway reaction occurs.
|
||||
|
||||
\begin{figure}[H]
|
||||
\begin{figure}[ht]
|
||||
\includegraphics[scale=0.70]{plots2}
|
||||
\centering
|
||||
\captionsetup{width=0.80\textwidth}
|
||||
\caption{Plots of energy released over time. Each plot corresponds a
|
||||
different density: 0\%, 5\%, 8\%, 10\%, 11\%, 12\%, 13\%, 15\%, 17\% and 20\%}
|
||||
\label{fig:plot2}
|
||||
|
Reference in New Issue
Block a user