Slightly simplify the monotone definition

This commit is contained in:
Jip J. Dekker 2021-07-25 10:44:24 +10:00
parent bd6a9f9d44
commit 63dc091a73
No known key found for this signature in database
GPG Key ID: 517DF4A00618C9C3

View File

@ -92,8 +92,8 @@ Since Boolean expressions in \minizinc{} can be used in, for example, integer ex
\end{example}
To systematically analyse whether Boolean expressions can be \gls{half-reified}, we study the \emph{monotonicity} of \constraints{} \wrt{} an expression.
A relation \( r( a_{n}, \ldots{}, a_{i}, \ldots{} , a_{m}) \) is said to be \emph{monotone} \wrt{} its argument \(a_{i}\) when given two possible values for \(a_{i}\), \(x\) and \(y\), if \(x > y\), then \(r( a_{n}, \ldots{}, x, \ldots{} , a_{m}) \geq{} r( a_{n}, \ldots{}, y, \ldots{} , a_{m})\), independent of other arguments.
Contrariwise, a relation \( r( a_{n}, \ldots{}, a_{i}, \ldots{} , a_{m}) \) is said to be \emph{antitone} \wrt{} its argument \(a_{i}\) if given two possible values for \(a_{i}\), \(x\) and \(y\), if \(x > y\), then \(r( a_{n}, \ldots{}, x, \ldots{} , a_{m}) \leq{} r( a_{n}, \ldots{}, y, \ldots{} , a_{m}) \), independent of the other arguments.
A relation \( r(\ldots{}, a, \ldots{}) \) is said to be \emph{monotone} \wrt{} its argument \(a\) when given two possible values for \(a\), \(x\) and \(y\), if \(x > y\), then \(r(\ldots{}, x, \ldots{}) \geq{} r(\ldots{}, y, \ldots{})\), independent of any other arguments.
Contrariwise, the relation is said to be \emph{antitone} \wrt{} its argument \(a\) if given two possible values for \(a\), \(x\) and \(y\), if \(x > y\), then \(r(\ldots{}, x, \ldots{}) \leq{} r(\ldots{}, y, \ldots{}) \), independent of any other arguments.
Where, for clarification, we assume \( \text{false} < \text{true} \).
Using these definitions, we introduce extra distinctions in the context of expressions.