Slightly simplify the monotone definition
This commit is contained in:
parent
bd6a9f9d44
commit
63dc091a73
@ -92,8 +92,8 @@ Since Boolean expressions in \minizinc{} can be used in, for example, integer ex
|
||||
\end{example}
|
||||
|
||||
To systematically analyse whether Boolean expressions can be \gls{half-reified}, we study the \emph{monotonicity} of \constraints{} \wrt{} an expression.
|
||||
A relation \( r( a_{n}, \ldots{}, a_{i}, \ldots{} , a_{m}) \) is said to be \emph{monotone} \wrt{} its argument \(a_{i}\) when given two possible values for \(a_{i}\), \(x\) and \(y\), if \(x > y\), then \(r( a_{n}, \ldots{}, x, \ldots{} , a_{m}) \geq{} r( a_{n}, \ldots{}, y, \ldots{} , a_{m})\), independent of other arguments.
|
||||
Contrariwise, a relation \( r( a_{n}, \ldots{}, a_{i}, \ldots{} , a_{m}) \) is said to be \emph{antitone} \wrt{} its argument \(a_{i}\) if given two possible values for \(a_{i}\), \(x\) and \(y\), if \(x > y\), then \(r( a_{n}, \ldots{}, x, \ldots{} , a_{m}) \leq{} r( a_{n}, \ldots{}, y, \ldots{} , a_{m}) \), independent of the other arguments.
|
||||
A relation \( r(\ldots{}, a, \ldots{}) \) is said to be \emph{monotone} \wrt{} its argument \(a\) when given two possible values for \(a\), \(x\) and \(y\), if \(x > y\), then \(r(\ldots{}, x, \ldots{}) \geq{} r(\ldots{}, y, \ldots{})\), independent of any other arguments.
|
||||
Contrariwise, the relation is said to be \emph{antitone} \wrt{} its argument \(a\) if given two possible values for \(a\), \(x\) and \(y\), if \(x > y\), then \(r(\ldots{}, x, \ldots{}) \leq{} r(\ldots{}, y, \ldots{}) \), independent of any other arguments.
|
||||
Where, for clarification, we assume \( \text{false} < \text{true} \).
|
||||
|
||||
Using these definitions, we introduce extra distinctions in the context of expressions.
|
||||
|
Reference in New Issue
Block a user