git-subtree-dir: software/gecode_on_replay git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
240 lines
5.2 KiB
C++
240 lines
5.2 KiB
C++
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Christian Schulte <schulte@gecode.org>
|
|
*
|
|
* Copyright:
|
|
* Christian Schulte, 2012
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
namespace Gecode { namespace Int { namespace Arithmetic {
|
|
|
|
forceinline
|
|
PowOps::PowOps(int n0) : n(n0) {}
|
|
|
|
forceinline bool
|
|
PowOps::even(int m) {
|
|
return (m & 1) == 0;
|
|
}
|
|
|
|
forceinline bool
|
|
PowOps::even(void) const {
|
|
return even(n);
|
|
}
|
|
|
|
forceinline int
|
|
PowOps::exp(void) const {
|
|
return n;
|
|
}
|
|
|
|
forceinline void
|
|
PowOps::exp(int m) {
|
|
n=m;
|
|
}
|
|
|
|
template<class IntType>
|
|
inline IntType
|
|
PowOps::pow(IntType x) const {
|
|
int m = n;
|
|
IntType p = 1;
|
|
do {
|
|
if (even(m)) {
|
|
x *= x; m >>= 1;
|
|
} else {
|
|
p *= x; m--;
|
|
}
|
|
} while (m > 0);
|
|
return p;
|
|
}
|
|
|
|
inline int
|
|
PowOps::tpow(int _x) const {
|
|
int m = n;
|
|
long long int p = 1;
|
|
long long int x = _x;
|
|
do {
|
|
if (even(m)) {
|
|
x *= x; m >>= 1;
|
|
} else {
|
|
p *= x; m--;
|
|
}
|
|
if (p > Limits::max)
|
|
return Limits::max+1;
|
|
if (p < Limits::min)
|
|
return Limits::min-1;
|
|
} while (m > 0);
|
|
return static_cast<int>(p);
|
|
}
|
|
|
|
forceinline bool
|
|
PowOps::powgr(long long int r, int x) const {
|
|
assert(r >= 0);
|
|
int m = n;
|
|
long long int y = r;
|
|
long long int p = 1;
|
|
do {
|
|
if (even(m)) {
|
|
y *= y; m >>= 1;
|
|
if (y > x)
|
|
return true;
|
|
} else {
|
|
p *= y; m--;
|
|
if (p > x)
|
|
return true;
|
|
}
|
|
} while (m > 0);
|
|
assert(y <= x);
|
|
return false;
|
|
}
|
|
|
|
inline int
|
|
PowOps::fnroot(int x) const {
|
|
if (x < 2)
|
|
return x;
|
|
/*
|
|
* We look for l such that: l^n <= x < (l+1)^n
|
|
*/
|
|
long long int l = 1;
|
|
long long int u = x;
|
|
do {
|
|
long long int m = (l + u) >> 1;
|
|
if (powgr(m,x)) u=m; else l=m;
|
|
} while (l+1 < u);
|
|
assert((pow(l) <= x) && (x < pow(l+1)));
|
|
return static_cast<int>(l);
|
|
}
|
|
|
|
forceinline bool
|
|
PowOps::powle(long long int r, int x) const {
|
|
assert(r >= 0);
|
|
int m = n;
|
|
long long int y = r;
|
|
long long int p = 1;
|
|
do {
|
|
if (even(m)) {
|
|
y *= y; m >>= 1;
|
|
if (y >= x)
|
|
return false;
|
|
} else {
|
|
p *= y; m--;
|
|
if (p >= x)
|
|
return false;
|
|
}
|
|
} while (m > 0);
|
|
assert(y < x);
|
|
return true;
|
|
}
|
|
|
|
inline int
|
|
PowOps::cnroot(int x) const {
|
|
if (x < 2)
|
|
return x;
|
|
/*
|
|
* We look for u such that: (u-1)^n < x <= u^n
|
|
*/
|
|
long long int l = 1;
|
|
long long int u = x;
|
|
do {
|
|
long long int m = (l + u) >> 1;
|
|
if (powle(m,x)) l=m; else u=m;
|
|
} while (l+1 < u);
|
|
assert((pow(u-1) < x) && (x <= pow(u)));
|
|
return static_cast<int>(u);
|
|
}
|
|
|
|
|
|
|
|
forceinline bool
|
|
SqrOps::even(void) const {
|
|
return true;
|
|
}
|
|
|
|
forceinline int
|
|
SqrOps::exp(void) const {
|
|
return 2;
|
|
}
|
|
|
|
forceinline void
|
|
SqrOps::exp(int) {
|
|
GECODE_NEVER;
|
|
}
|
|
|
|
template<class IntType>
|
|
inline IntType
|
|
SqrOps::pow(IntType x) const {
|
|
return x * x;
|
|
}
|
|
|
|
inline int
|
|
SqrOps::tpow(int _x) const {
|
|
long long int x = _x;
|
|
if (x*x > Limits::max)
|
|
return Limits::max+1;
|
|
if (x*x < Limits::min)
|
|
return Limits::min-1;
|
|
return static_cast<int>(x*x);
|
|
}
|
|
|
|
inline int
|
|
SqrOps::fnroot(int x) const {
|
|
if (x < 2)
|
|
return x;
|
|
/*
|
|
* We look for l such that: l^2 <= x < (l+1)^2
|
|
*/
|
|
long long int l = 1;
|
|
long long int u = x;
|
|
do {
|
|
long long int m = (l + u) >> 1;
|
|
if (m*m > x) u=m; else l=m;
|
|
} while (l+1 < u);
|
|
assert((pow(l) <= x) && (x < pow(l+1)));
|
|
return static_cast<int>(l);
|
|
}
|
|
|
|
inline int
|
|
SqrOps::cnroot(int x) const {
|
|
if (x < 2)
|
|
return x;
|
|
/*
|
|
* We look for u such that: (u-1)^n < x <= u^n
|
|
*/
|
|
long long int l = 1;
|
|
long long int u = x;
|
|
do {
|
|
long long int m = (l + u) >> 1;
|
|
if (m*m < x) l=m; else u=m;
|
|
} while (l+1 < u);
|
|
assert((pow(u-1) < x) && (x <= pow(u)));
|
|
return static_cast<int>(u);
|
|
}
|
|
|
|
}}}
|
|
|
|
// STATISTICS: int-other
|
|
|