git-subtree-dir: software/gecode_on_replay git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
233 lines
8.0 KiB
C++
Executable File
233 lines
8.0 KiB
C++
Executable File
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Samuel Gagnon <samuel.gagnon92@gmail.com>
|
|
*
|
|
* Copyright:
|
|
* Samuel Gagnon, 2018
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#ifdef GECODE_HAS_CBS
|
|
|
|
#include <limits>
|
|
#include <algorithm>
|
|
|
|
namespace Gecode { namespace Int { namespace Distinct {
|
|
|
|
/**
|
|
* \brief Minc and Brégman factors
|
|
*
|
|
* Factors precomputed for every value in the domain of x. Thoses factors are
|
|
* used to compute the Minc and Brégman upper bound for the permanent in
|
|
* counting base search
|
|
*/
|
|
const int MAX_MINC_FACTORS = 400;
|
|
extern const double mincFactors[MAX_MINC_FACTORS];
|
|
|
|
forceinline double
|
|
getMincFactor(int domSize) {
|
|
return mincFactors[domSize - 1];
|
|
}
|
|
|
|
/**
|
|
* \brief Liang and Bai factors
|
|
*
|
|
* Factors precomputed for every index and domain size in x. Thoses factors
|
|
* are used to compute the Liang and Bai upper bound for the permanent in
|
|
* counting base search
|
|
*/
|
|
const int WIDTH_LIANG_BAI_FACTORS = 400;
|
|
extern const double liangBaiFactors[WIDTH_LIANG_BAI_FACTORS * WIDTH_LIANG_BAI_FACTORS];
|
|
|
|
forceinline double
|
|
getLiangBaiFactor(int index, int domSize) {
|
|
return liangBaiFactors[index*WIDTH_LIANG_BAI_FACTORS + domSize - 1];
|
|
}
|
|
|
|
/**
|
|
* \brief Mapping of each value to its permanent update
|
|
*
|
|
*/
|
|
class ValToUpdate {
|
|
private:
|
|
/// Minimum value of the union of all variable domains in the propagator
|
|
const int minVal;
|
|
/// Minc and Brégman estimation update for each value
|
|
double* mincUpdate;
|
|
/// Liang and Bai estimation update for each value
|
|
double* liangUpdate;
|
|
public:
|
|
template<class View>
|
|
ValToUpdate(const ViewArray<View>& x,
|
|
int minDomVal, int maxDomVal, Region& r);
|
|
/**
|
|
* Gives the update we have to apply to the Minc and Brégman
|
|
* estimation of the permanent if we fix a variable of cardinalty
|
|
* \a varSize to the value \a val.
|
|
*/
|
|
double getMincUpdate(int val, unsigned int varSize) const;
|
|
/**
|
|
* Gives the update we have to apply to the Liang and Bai
|
|
* estimation of the
|
|
* permanent if we fix a variable of cardinalty \a varSize
|
|
* to the value "val".
|
|
*/
|
|
double getLiangUpdate(int val, unsigned int idx, unsigned int varSize) const;
|
|
};
|
|
|
|
template<class View>
|
|
forceinline
|
|
ValToUpdate::ValToUpdate(const ViewArray<View>& x,
|
|
int minDomVal, int maxDomVal, Region& r)
|
|
: minVal(minDomVal) {
|
|
unsigned int width = maxDomVal - minDomVal + 1;
|
|
mincUpdate = r.alloc<double>(width);
|
|
std::fill(mincUpdate, mincUpdate + width, 1);
|
|
liangUpdate = r.alloc<double>(width);
|
|
std::fill(liangUpdate, liangUpdate + width, 1);
|
|
|
|
for (int i=0; i<x.size(); i++) {
|
|
if (x[i].assigned()) continue;
|
|
size_t s = x[i].size();
|
|
for (ViewValues<View> val(x[i]); val(); ++val) {
|
|
int idx = val.val() - minVal;
|
|
mincUpdate[idx] *= getMincFactor(s-1) / getMincFactor(s);
|
|
liangUpdate[idx] *= getLiangBaiFactor(i, s-1) / getLiangBaiFactor(i, s);
|
|
}
|
|
}
|
|
}
|
|
|
|
forceinline double
|
|
ValToUpdate::getMincUpdate(int val, unsigned int varSize) const {
|
|
return mincUpdate[val-minVal] / getMincFactor(varSize-1);
|
|
}
|
|
|
|
forceinline double
|
|
ValToUpdate::getLiangUpdate(int val, unsigned int idx,
|
|
unsigned int varSize) const {
|
|
return liangUpdate[val-minVal] / getLiangBaiFactor(idx, varSize-1);
|
|
}
|
|
|
|
|
|
template<class View>
|
|
void cbsdistinct(Space&, unsigned int prop_id, const ViewArray<View>& x,
|
|
Propagator::SendMarginal send) {
|
|
// Computation of Minc and Brégman and Liang and Bai upper bounds for
|
|
// the permanent of the whole constraint
|
|
struct UB {
|
|
double minc;
|
|
double liangBai;
|
|
};
|
|
|
|
UB ub{1,1};
|
|
for (int i=0; i<x.size(); i++) {
|
|
unsigned int s = x[i].size();
|
|
if ((s >= MAX_MINC_FACTORS) || (s >= WIDTH_LIANG_BAI_FACTORS))
|
|
throw Gecode::Exception("Int::Distinct::cbsdistinct",
|
|
"Variable cardinality too big for using counting-based"
|
|
"search with distinct constraints");
|
|
ub.minc *= getMincFactor(s);
|
|
ub.liangBai *= getLiangBaiFactor(i, s);
|
|
}
|
|
|
|
// Minimum and maximum value of the union of all variable domains
|
|
int minVal = std::numeric_limits<int>::max();
|
|
int maxVal = std::numeric_limits<int>::min();
|
|
for (const auto& v : x) {
|
|
if (v.assigned()) continue;
|
|
minVal = std::min(v.min(), minVal);
|
|
maxVal = std::max(v.max(), maxVal);
|
|
}
|
|
|
|
// For each possible value, we compute the update we have to apply to the
|
|
// permanent of the whole constraint to get the new solution count
|
|
Region r;
|
|
ValToUpdate valToUpdate(x, minVal, maxVal, r);
|
|
|
|
// Preallocated memory for holding solution counts for all values of a
|
|
// variable during computation
|
|
double* solCounts = r.alloc<double>(maxVal - minVal + 1);
|
|
|
|
for (int i=0; i<x.size(); i++) {
|
|
if (x[i].assigned()) continue;
|
|
|
|
// Normalization constant for keeping densities values between 0 and 1
|
|
double normalization = 0;
|
|
// We calculate the density for every possible value assignment
|
|
for (ViewValues<View> val(x[i]); val(); ++val) {
|
|
UB localUB = ub;
|
|
int v = val.val();
|
|
unsigned int s = x[i].size();
|
|
|
|
// We update both upper bounds according to the assigned value, yielding
|
|
// two new estimations for the upper bound
|
|
localUB.minc *= valToUpdate.getMincUpdate(v, s);
|
|
localUB.liangBai *= valToUpdate.getLiangUpdate(v, i, s);
|
|
|
|
// We take the lower upper bound as our estimation for the permanent
|
|
double lowerUB = std::min(localUB.minc, ::sqrt(localUB.liangBai));
|
|
solCounts[val.val() - minVal] = lowerUB;
|
|
normalization += lowerUB;
|
|
}
|
|
|
|
// Because we approximate the permanent of each value for the variable, we
|
|
// assign densities in a separate loop where we normalize solution densities.
|
|
for (ViewValues<View> val(x[i]); val(); ++val) {
|
|
// In practice, send is going to be a function provided by a brancher.
|
|
// Thus, the brancher will receive each computed solution densities via
|
|
// this call. For more details, please see Section 4 of the dissertation
|
|
// "Improvement and Integration of Counting-Based Search Heuristics in
|
|
// Constraint Programming" by Samuel Gagnon.
|
|
send(prop_id,
|
|
x[i].id(),
|
|
x[i].baseval(val.val()),
|
|
solCounts[val.val() - minVal] / normalization);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class View>
|
|
void cbssize(const ViewArray<View>& x, Propagator::InDecision in,
|
|
unsigned int& size, unsigned int& size_b) {
|
|
size = 0;
|
|
size_b = 0;
|
|
for (const auto& v : x) {
|
|
if (!v.assigned()) {
|
|
size += v.size();
|
|
if (in(v.id()))
|
|
size_b += v.size();
|
|
}
|
|
}
|
|
}
|
|
|
|
}}}
|
|
|
|
#endif
|
|
|
|
// STATISTICS: int-prop
|
|
|