1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
Jip J. Dekker 981be2067e Squashed 'software/gecode_on_replay/' content from commit 8051d92b9
git-subtree-dir: software/gecode_on_replay
git-subtree-split: 8051d92b9c89e49cccfbd1c201371580d7703ab4
2021-06-16 14:04:29 +10:00

233 lines
8.0 KiB
C++
Executable File

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Samuel Gagnon <samuel.gagnon92@gmail.com>
*
* Copyright:
* Samuel Gagnon, 2018
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifdef GECODE_HAS_CBS
#include <limits>
#include <algorithm>
namespace Gecode { namespace Int { namespace Distinct {
/**
* \brief Minc and Brégman factors
*
* Factors precomputed for every value in the domain of x. Thoses factors are
* used to compute the Minc and Brégman upper bound for the permanent in
* counting base search
*/
const int MAX_MINC_FACTORS = 400;
extern const double mincFactors[MAX_MINC_FACTORS];
forceinline double
getMincFactor(int domSize) {
return mincFactors[domSize - 1];
}
/**
* \brief Liang and Bai factors
*
* Factors precomputed for every index and domain size in x. Thoses factors
* are used to compute the Liang and Bai upper bound for the permanent in
* counting base search
*/
const int WIDTH_LIANG_BAI_FACTORS = 400;
extern const double liangBaiFactors[WIDTH_LIANG_BAI_FACTORS * WIDTH_LIANG_BAI_FACTORS];
forceinline double
getLiangBaiFactor(int index, int domSize) {
return liangBaiFactors[index*WIDTH_LIANG_BAI_FACTORS + domSize - 1];
}
/**
* \brief Mapping of each value to its permanent update
*
*/
class ValToUpdate {
private:
/// Minimum value of the union of all variable domains in the propagator
const int minVal;
/// Minc and Brégman estimation update for each value
double* mincUpdate;
/// Liang and Bai estimation update for each value
double* liangUpdate;
public:
template<class View>
ValToUpdate(const ViewArray<View>& x,
int minDomVal, int maxDomVal, Region& r);
/**
* Gives the update we have to apply to the Minc and Brégman
* estimation of the permanent if we fix a variable of cardinalty
* \a varSize to the value \a val.
*/
double getMincUpdate(int val, unsigned int varSize) const;
/**
* Gives the update we have to apply to the Liang and Bai
* estimation of the
* permanent if we fix a variable of cardinalty \a varSize
* to the value "val".
*/
double getLiangUpdate(int val, unsigned int idx, unsigned int varSize) const;
};
template<class View>
forceinline
ValToUpdate::ValToUpdate(const ViewArray<View>& x,
int minDomVal, int maxDomVal, Region& r)
: minVal(minDomVal) {
unsigned int width = maxDomVal - minDomVal + 1;
mincUpdate = r.alloc<double>(width);
std::fill(mincUpdate, mincUpdate + width, 1);
liangUpdate = r.alloc<double>(width);
std::fill(liangUpdate, liangUpdate + width, 1);
for (int i=0; i<x.size(); i++) {
if (x[i].assigned()) continue;
size_t s = x[i].size();
for (ViewValues<View> val(x[i]); val(); ++val) {
int idx = val.val() - minVal;
mincUpdate[idx] *= getMincFactor(s-1) / getMincFactor(s);
liangUpdate[idx] *= getLiangBaiFactor(i, s-1) / getLiangBaiFactor(i, s);
}
}
}
forceinline double
ValToUpdate::getMincUpdate(int val, unsigned int varSize) const {
return mincUpdate[val-minVal] / getMincFactor(varSize-1);
}
forceinline double
ValToUpdate::getLiangUpdate(int val, unsigned int idx,
unsigned int varSize) const {
return liangUpdate[val-minVal] / getLiangBaiFactor(idx, varSize-1);
}
template<class View>
void cbsdistinct(Space&, unsigned int prop_id, const ViewArray<View>& x,
Propagator::SendMarginal send) {
// Computation of Minc and Brégman and Liang and Bai upper bounds for
// the permanent of the whole constraint
struct UB {
double minc;
double liangBai;
};
UB ub{1,1};
for (int i=0; i<x.size(); i++) {
unsigned int s = x[i].size();
if ((s >= MAX_MINC_FACTORS) || (s >= WIDTH_LIANG_BAI_FACTORS))
throw Gecode::Exception("Int::Distinct::cbsdistinct",
"Variable cardinality too big for using counting-based"
"search with distinct constraints");
ub.minc *= getMincFactor(s);
ub.liangBai *= getLiangBaiFactor(i, s);
}
// Minimum and maximum value of the union of all variable domains
int minVal = std::numeric_limits<int>::max();
int maxVal = std::numeric_limits<int>::min();
for (const auto& v : x) {
if (v.assigned()) continue;
minVal = std::min(v.min(), minVal);
maxVal = std::max(v.max(), maxVal);
}
// For each possible value, we compute the update we have to apply to the
// permanent of the whole constraint to get the new solution count
Region r;
ValToUpdate valToUpdate(x, minVal, maxVal, r);
// Preallocated memory for holding solution counts for all values of a
// variable during computation
double* solCounts = r.alloc<double>(maxVal - minVal + 1);
for (int i=0; i<x.size(); i++) {
if (x[i].assigned()) continue;
// Normalization constant for keeping densities values between 0 and 1
double normalization = 0;
// We calculate the density for every possible value assignment
for (ViewValues<View> val(x[i]); val(); ++val) {
UB localUB = ub;
int v = val.val();
unsigned int s = x[i].size();
// We update both upper bounds according to the assigned value, yielding
// two new estimations for the upper bound
localUB.minc *= valToUpdate.getMincUpdate(v, s);
localUB.liangBai *= valToUpdate.getLiangUpdate(v, i, s);
// We take the lower upper bound as our estimation for the permanent
double lowerUB = std::min(localUB.minc, ::sqrt(localUB.liangBai));
solCounts[val.val() - minVal] = lowerUB;
normalization += lowerUB;
}
// Because we approximate the permanent of each value for the variable, we
// assign densities in a separate loop where we normalize solution densities.
for (ViewValues<View> val(x[i]); val(); ++val) {
// In practice, send is going to be a function provided by a brancher.
// Thus, the brancher will receive each computed solution densities via
// this call. For more details, please see Section 4 of the dissertation
// "Improvement and Integration of Counting-Based Search Heuristics in
// Constraint Programming" by Samuel Gagnon.
send(prop_id,
x[i].id(),
x[i].baseval(val.val()),
solCounts[val.val() - minVal] / normalization);
}
}
}
template<class View>
void cbssize(const ViewArray<View>& x, Propagator::InDecision in,
unsigned int& size, unsigned int& size_b) {
size = 0;
size_b = 0;
for (const auto& v : x) {
if (!v.assigned()) {
size += v.size();
if (in(v.id()))
size_b += v.size();
}
}
}
}}}
#endif
// STATISTICS: int-prop