318 lines
9.9 KiB
C++
Executable File
318 lines
9.9 KiB
C++
Executable File
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
|
|
/*
|
|
* Main authors:
|
|
* Mikael Lagerkvist <lagerkvist@gecode.org>
|
|
*
|
|
* Copyright:
|
|
* Mikael Lagerkvist, 2006
|
|
*
|
|
* This file is part of Gecode, the generic constraint
|
|
* development environment:
|
|
* http://www.gecode.org
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <gecode/driver.hh>
|
|
#include <gecode/int.hh>
|
|
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
|
|
using namespace Gecode;
|
|
|
|
namespace {
|
|
|
|
using std::vector;
|
|
|
|
/// Layout of the cards
|
|
vector<vector<int> > layout;
|
|
/// information for locating particular cards in the layout
|
|
vector<int> layer, pile;
|
|
|
|
/** \brief Generates\ref layout.
|
|
*
|
|
* This function generates the layeout and intializes \ref layer and
|
|
* \ref pile from it. The layout is randomly generated from the
|
|
* supplied seed.
|
|
*/
|
|
void generate(int seed) {
|
|
// The layout consists of 17 piles of 3 cards each
|
|
layout = vector<vector<int> >(17, vector<int>(3));
|
|
// Deck without the Ace of Spades
|
|
vector<int> deck(51);
|
|
for (int i = 51; i--; ) deck[i] = i+1;
|
|
Support::RandomGenerator rnd(seed+1);
|
|
std::random_shuffle(deck.begin(), deck.end(), rnd);
|
|
|
|
// Place cards from deck
|
|
int pos = 0;
|
|
for (int i = 17; i--; )
|
|
for (int j = 3; j--; )
|
|
layout[i][j] = deck[pos++];
|
|
|
|
// Location-information for each card
|
|
layer = vector<int>(52);
|
|
pile = vector<int>(52);
|
|
for (int i = 17; i--; ) {
|
|
for (int j = 3; j--; ) {
|
|
layer[layout[i][j]] = j;
|
|
pile[ layout[i][j]] = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief %Example: Black hole patience
|
|
*
|
|
* This example solves instances of the black-hole patience game.
|
|
*
|
|
* The model of the problem is mostly taken from "Search in the
|
|
* Patience Game 'Black Hole'", by Ian P. Gent, Chris Jefferson, Tom
|
|
* Kelsey, Inês Lynce, Ian Miguel, Peter Nightingale, Barbara
|
|
* M. Smith, and S. Armagan Tarim.
|
|
*
|
|
* The conditional symmetry identified in the above paper can be
|
|
* eliminated (enabled by default).
|
|
*
|
|
* \ingroup Example
|
|
*
|
|
*/
|
|
class BlackHole : public Script {
|
|
protected:
|
|
IntVarArray x, ///< Card at position
|
|
y; ///< Position of card
|
|
|
|
/// Return a string representing the card of value val
|
|
std::string
|
|
card(int val) const {
|
|
const char* suit = "SCHD";
|
|
std::ostringstream o;
|
|
o << std::setw(2) << (1 + (val%13)) << suit[val/13];
|
|
return o.str();
|
|
}
|
|
|
|
public:
|
|
/// Symmetry variants
|
|
enum {
|
|
SYMMETRY_NONE, ///< No symmetry breaking
|
|
SYMMETRY_CONDITIONAL ///< Breaking conditional symmetries
|
|
};
|
|
/// Propagation of placement-rules
|
|
enum {
|
|
PROPAGATION_REIFIED, ///< Reified propagation
|
|
PROPAGATION_DFA, ///< Extensional propagation using automatons
|
|
PROPAGATION_TUPLE_SET ///< Extensional propagation using tables
|
|
};
|
|
/// Actual model
|
|
BlackHole(const SizeOptions& opt)
|
|
: Script(opt), x(*this, 52, 0,51), y(*this, 52, 0,51) {
|
|
// Black ace at bottom
|
|
rel(*this, x[0], IRT_EQ, 0);
|
|
|
|
// x is order and y is placement
|
|
channel(*this, x, y, opt.ipl());
|
|
|
|
// The placement rules: the absolute value of the difference
|
|
// between two consecutive cards is 1 or 12.
|
|
if (opt.propagation() == PROPAGATION_REIFIED) {
|
|
// Build table for accessing the rank of a card
|
|
IntArgs modtable(52);
|
|
for (int i = 0; i < 52; ++i) {
|
|
modtable[i] = i%13;
|
|
}
|
|
for (int i = 0; i < 51; ++i) {
|
|
IntVar x1(*this, 0, 12), x2(*this, 0, 12);
|
|
element(*this, modtable, x[i], x1);
|
|
element(*this, modtable, x[i+1], x2);
|
|
const int dr[2] = {1, 12};
|
|
IntVar diff(*this, IntSet(dr, 2));
|
|
rel(*this, abs(x1-x2) == diff, IPL_DOM);
|
|
}
|
|
} else if (opt.propagation() == PROPAGATION_DFA) {
|
|
// Build table for allowed tuples
|
|
REG expression;
|
|
for (int r = 13; r--; ) {
|
|
for (int s1 = 4; s1--; ) {
|
|
for (int s2 = 4; s2--; ) {
|
|
for (int i = -1; i <= 1; i+=2) {
|
|
REG r1 = REG(r+13*s1);
|
|
REG r2 = REG((r+i+52+13*s2)%52);
|
|
REG r = r1 + r2;
|
|
expression |= r;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DFA table(expression);
|
|
|
|
for (int i = 51; i--; )
|
|
extensional(*this, IntVarArgs({x[i],x[i+1]}), table);
|
|
|
|
} else { // opt.propagation() == PROPAGATION_TUPLE_SET)
|
|
// Build table for allowed tuples
|
|
TupleSet ts(2);
|
|
for (int r = 13; r--; )
|
|
for (int s1 = 4; s1--; )
|
|
for (int s2 = 4; s2--; )
|
|
for (int i = -1; i <= 1; i+=2)
|
|
ts.add({r+13*s1, (r+i+52+13*s2)%52});
|
|
ts.finalize();
|
|
|
|
for (int i = 51; i--; )
|
|
extensional(*this, IntVarArgs({x[i],x[i+1]}), ts);
|
|
}
|
|
|
|
// A card must be played before the one under it.
|
|
for (int i = 17; i--; )
|
|
for (int j = 2; j--; )
|
|
rel(*this, y[layout[i][j]] < y[layout[i][j+1]]);
|
|
|
|
// Compute and break the conditional symmetries that are dependent
|
|
// on the current layout.
|
|
// Two cards with the same rank but different suits are symmetric
|
|
// with respect to their placement in the black hole if changing
|
|
// their order does not affect any other card.
|
|
if (opt.symmetry() == SYMMETRY_CONDITIONAL) {
|
|
// For all ranks
|
|
for (int r = 13; r--; ) {
|
|
// For all pairs of suits
|
|
for (int s1 = 4; s1--; ) {
|
|
for (int s2 = s1; s2--; ) {
|
|
int c1 = 13*s1 + r,
|
|
c2 = 13*s2 + r;
|
|
// The ace of spades is already placed
|
|
if (c1 == 0 || c2 == 0) continue;
|
|
// Piles are handled by the rules of the game
|
|
if (pile[c1] == pile[c2]) continue;
|
|
// Fix the right order of the cards
|
|
int o1 = c1, o2 = c2;
|
|
if (pile[c1] > pile[c2] && layer[c2] >= layer[c1])
|
|
std::swap(o1, o2);
|
|
// cond is the condition for the symmetry
|
|
BoolVarArgs ba;
|
|
// Both cards played after the ones on top of them
|
|
for (int i = 0; i < layer[o1]; ++i)
|
|
ba << expr(*this, (y[layout[pile[o1]][i]] < y[o2]));
|
|
for (int i = 0; i < layer[o2]; ++i)
|
|
ba << expr(*this, (y[layout[pile[o2]][i]] < y[o1]));
|
|
// Both cards played before the ones under them
|
|
for (int i = layer[o1]+1; i < 3; ++i)
|
|
ba << expr(*this, (y[o2] < y[layout[pile[o1]][i]]));
|
|
for (int i = layer[o2]+1; i < 3; ++i)
|
|
ba << expr(*this, (y[o1] < y[layout[pile[o2]][i]]));
|
|
// Cond holds when all the above holds
|
|
BoolVar cond(*this, 0, 1);
|
|
rel(*this, BOT_AND, ba, cond);
|
|
|
|
// If cond is fulfilled, then we can order the cards
|
|
// cond -> (y[o1] < y[o2])
|
|
rel(*this, !cond || (y[o1] < y[o2]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Install custom brancher
|
|
branch(*this, x, INT_VAR_NONE(), INT_VAL(&val));
|
|
}
|
|
/// Value selection function for branching
|
|
static int val(const Space&, IntVar x, int) {
|
|
int v = -1;
|
|
int w = 4;
|
|
for (IntVarValues vals(x); vals(); ++vals)
|
|
if (layer[vals.val()] < w) {
|
|
v = vals.val();
|
|
if ((w = layer[vals.val()]) == 0)
|
|
break;
|
|
}
|
|
assert(v >= 1 && v < 52);
|
|
return v;
|
|
}
|
|
/// Print instance and solution
|
|
virtual void
|
|
print(std::ostream& os) const {
|
|
os << "Layout:" << std::endl;
|
|
for (int i = 0; i < 17; i++) {
|
|
for (int j = 0; j < 3; j++)
|
|
os << card(layout[i][j]) << " ";
|
|
if ((i+1) % 3 == 0)
|
|
os << std::endl;
|
|
else
|
|
os << " \t";
|
|
}
|
|
os << std::endl << std::endl;
|
|
|
|
os << "Solution:" << std::endl;
|
|
for (int i = 0; i < 52; ++i) {
|
|
if (x[i].assigned())
|
|
os << card(x[i].val()) << " ";
|
|
else
|
|
os << " ";
|
|
if ((i + 1) % 13 == 0)
|
|
os << std::endl;
|
|
}
|
|
os << std::endl;
|
|
os << std::endl;
|
|
}
|
|
|
|
/// Constructor for cloning \a s
|
|
BlackHole(BlackHole& s) : Script(s) {
|
|
x.update(*this, s.x);
|
|
y.update(*this, s.y);
|
|
}
|
|
/// Copy during cloning
|
|
virtual Space*
|
|
copy(void) {
|
|
return new BlackHole(*this);
|
|
}
|
|
};
|
|
|
|
/** \brief Main-function
|
|
* \relates BlackHole
|
|
*/
|
|
int
|
|
main(int argc, char* argv[]) {
|
|
SizeOptions opt("Black Hole patience");
|
|
opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL);
|
|
opt.symmetry(BlackHole::SYMMETRY_NONE,"none",
|
|
"no symmetry breaking");
|
|
opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL,"conditional",
|
|
"break conditional symmetries");
|
|
opt.propagation(BlackHole::PROPAGATION_TUPLE_SET);
|
|
opt.propagation(BlackHole::PROPAGATION_REIFIED,
|
|
"reified", "use reified propagation");
|
|
opt.propagation(BlackHole::PROPAGATION_DFA,
|
|
"dfa", "use DFA-based extensional propagation");
|
|
opt.propagation(BlackHole::PROPAGATION_TUPLE_SET,
|
|
"tuple-set", "use TupleSet-based extensional propagation");
|
|
opt.ipl(IPL_DOM);
|
|
opt.parse(argc,argv);
|
|
// Generates the new board
|
|
generate(opt.size());
|
|
Script::run<BlackHole,DFS,SizeOptions>(opt);
|
|
return 0;
|
|
}
|
|
|
|
// STATISTICS: example-any
|