1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.

318 lines
9.9 KiB
C++
Executable File

/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Mikael Lagerkvist <lagerkvist@gecode.org>
*
* Copyright:
* Mikael Lagerkvist, 2006
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <vector>
#include <algorithm>
#include <sstream>
using namespace Gecode;
namespace {
using std::vector;
/// Layout of the cards
vector<vector<int> > layout;
/// information for locating particular cards in the layout
vector<int> layer, pile;
/** \brief Generates\ref layout.
*
* This function generates the layeout and intializes \ref layer and
* \ref pile from it. The layout is randomly generated from the
* supplied seed.
*/
void generate(int seed) {
// The layout consists of 17 piles of 3 cards each
layout = vector<vector<int> >(17, vector<int>(3));
// Deck without the Ace of Spades
vector<int> deck(51);
for (int i = 51; i--; ) deck[i] = i+1;
Support::RandomGenerator rnd(seed+1);
std::random_shuffle(deck.begin(), deck.end(), rnd);
// Place cards from deck
int pos = 0;
for (int i = 17; i--; )
for (int j = 3; j--; )
layout[i][j] = deck[pos++];
// Location-information for each card
layer = vector<int>(52);
pile = vector<int>(52);
for (int i = 17; i--; ) {
for (int j = 3; j--; ) {
layer[layout[i][j]] = j;
pile[ layout[i][j]] = i;
}
}
}
}
/**
* \brief %Example: Black hole patience
*
* This example solves instances of the black-hole patience game.
*
* The model of the problem is mostly taken from "Search in the
* Patience Game 'Black Hole'", by Ian P. Gent, Chris Jefferson, Tom
* Kelsey, Inês Lynce, Ian Miguel, Peter Nightingale, Barbara
* M. Smith, and S. Armagan Tarim.
*
* The conditional symmetry identified in the above paper can be
* eliminated (enabled by default).
*
* \ingroup Example
*
*/
class BlackHole : public Script {
protected:
IntVarArray x, ///< Card at position
y; ///< Position of card
/// Return a string representing the card of value val
std::string
card(int val) const {
const char* suit = "SCHD";
std::ostringstream o;
o << std::setw(2) << (1 + (val%13)) << suit[val/13];
return o.str();
}
public:
/// Symmetry variants
enum {
SYMMETRY_NONE, ///< No symmetry breaking
SYMMETRY_CONDITIONAL ///< Breaking conditional symmetries
};
/// Propagation of placement-rules
enum {
PROPAGATION_REIFIED, ///< Reified propagation
PROPAGATION_DFA, ///< Extensional propagation using automatons
PROPAGATION_TUPLE_SET ///< Extensional propagation using tables
};
/// Actual model
BlackHole(const SizeOptions& opt)
: Script(opt), x(*this, 52, 0,51), y(*this, 52, 0,51) {
// Black ace at bottom
rel(*this, x[0], IRT_EQ, 0);
// x is order and y is placement
channel(*this, x, y, opt.ipl());
// The placement rules: the absolute value of the difference
// between two consecutive cards is 1 or 12.
if (opt.propagation() == PROPAGATION_REIFIED) {
// Build table for accessing the rank of a card
IntArgs modtable(52);
for (int i = 0; i < 52; ++i) {
modtable[i] = i%13;
}
for (int i = 0; i < 51; ++i) {
IntVar x1(*this, 0, 12), x2(*this, 0, 12);
element(*this, modtable, x[i], x1);
element(*this, modtable, x[i+1], x2);
const int dr[2] = {1, 12};
IntVar diff(*this, IntSet(dr, 2));
rel(*this, abs(x1-x2) == diff, IPL_DOM);
}
} else if (opt.propagation() == PROPAGATION_DFA) {
// Build table for allowed tuples
REG expression;
for (int r = 13; r--; ) {
for (int s1 = 4; s1--; ) {
for (int s2 = 4; s2--; ) {
for (int i = -1; i <= 1; i+=2) {
REG r1 = REG(r+13*s1);
REG r2 = REG((r+i+52+13*s2)%52);
REG r = r1 + r2;
expression |= r;
}
}
}
}
DFA table(expression);
for (int i = 51; i--; )
extensional(*this, IntVarArgs({x[i],x[i+1]}), table);
} else { // opt.propagation() == PROPAGATION_TUPLE_SET)
// Build table for allowed tuples
TupleSet ts(2);
for (int r = 13; r--; )
for (int s1 = 4; s1--; )
for (int s2 = 4; s2--; )
for (int i = -1; i <= 1; i+=2)
ts.add({r+13*s1, (r+i+52+13*s2)%52});
ts.finalize();
for (int i = 51; i--; )
extensional(*this, IntVarArgs({x[i],x[i+1]}), ts);
}
// A card must be played before the one under it.
for (int i = 17; i--; )
for (int j = 2; j--; )
rel(*this, y[layout[i][j]] < y[layout[i][j+1]]);
// Compute and break the conditional symmetries that are dependent
// on the current layout.
// Two cards with the same rank but different suits are symmetric
// with respect to their placement in the black hole if changing
// their order does not affect any other card.
if (opt.symmetry() == SYMMETRY_CONDITIONAL) {
// For all ranks
for (int r = 13; r--; ) {
// For all pairs of suits
for (int s1 = 4; s1--; ) {
for (int s2 = s1; s2--; ) {
int c1 = 13*s1 + r,
c2 = 13*s2 + r;
// The ace of spades is already placed
if (c1 == 0 || c2 == 0) continue;
// Piles are handled by the rules of the game
if (pile[c1] == pile[c2]) continue;
// Fix the right order of the cards
int o1 = c1, o2 = c2;
if (pile[c1] > pile[c2] && layer[c2] >= layer[c1])
std::swap(o1, o2);
// cond is the condition for the symmetry
BoolVarArgs ba;
// Both cards played after the ones on top of them
for (int i = 0; i < layer[o1]; ++i)
ba << expr(*this, (y[layout[pile[o1]][i]] < y[o2]));
for (int i = 0; i < layer[o2]; ++i)
ba << expr(*this, (y[layout[pile[o2]][i]] < y[o1]));
// Both cards played before the ones under them
for (int i = layer[o1]+1; i < 3; ++i)
ba << expr(*this, (y[o2] < y[layout[pile[o1]][i]]));
for (int i = layer[o2]+1; i < 3; ++i)
ba << expr(*this, (y[o1] < y[layout[pile[o2]][i]]));
// Cond holds when all the above holds
BoolVar cond(*this, 0, 1);
rel(*this, BOT_AND, ba, cond);
// If cond is fulfilled, then we can order the cards
// cond -> (y[o1] < y[o2])
rel(*this, !cond || (y[o1] < y[o2]));
}
}
}
}
// Install custom brancher
branch(*this, x, INT_VAR_NONE(), INT_VAL(&val));
}
/// Value selection function for branching
static int val(const Space&, IntVar x, int) {
int v = -1;
int w = 4;
for (IntVarValues vals(x); vals(); ++vals)
if (layer[vals.val()] < w) {
v = vals.val();
if ((w = layer[vals.val()]) == 0)
break;
}
assert(v >= 1 && v < 52);
return v;
}
/// Print instance and solution
virtual void
print(std::ostream& os) const {
os << "Layout:" << std::endl;
for (int i = 0; i < 17; i++) {
for (int j = 0; j < 3; j++)
os << card(layout[i][j]) << " ";
if ((i+1) % 3 == 0)
os << std::endl;
else
os << " \t";
}
os << std::endl << std::endl;
os << "Solution:" << std::endl;
for (int i = 0; i < 52; ++i) {
if (x[i].assigned())
os << card(x[i].val()) << " ";
else
os << " ";
if ((i + 1) % 13 == 0)
os << std::endl;
}
os << std::endl;
os << std::endl;
}
/// Constructor for cloning \a s
BlackHole(BlackHole& s) : Script(s) {
x.update(*this, s.x);
y.update(*this, s.y);
}
/// Copy during cloning
virtual Space*
copy(void) {
return new BlackHole(*this);
}
};
/** \brief Main-function
* \relates BlackHole
*/
int
main(int argc, char* argv[]) {
SizeOptions opt("Black Hole patience");
opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL);
opt.symmetry(BlackHole::SYMMETRY_NONE,"none",
"no symmetry breaking");
opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL,"conditional",
"break conditional symmetries");
opt.propagation(BlackHole::PROPAGATION_TUPLE_SET);
opt.propagation(BlackHole::PROPAGATION_REIFIED,
"reified", "use reified propagation");
opt.propagation(BlackHole::PROPAGATION_DFA,
"dfa", "use DFA-based extensional propagation");
opt.propagation(BlackHole::PROPAGATION_TUPLE_SET,
"tuple-set", "use TupleSet-based extensional propagation");
opt.ipl(IPL_DOM);
opt.parse(argc,argv);
// Generates the new board
generate(opt.size());
Script::run<BlackHole,DFS,SizeOptions>(opt);
return 0;
}
// STATISTICS: example-any