1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.

51 lines
2.7 KiB
MiniZinc

predicate fzn_neural_net(array[int] of var float: inputs,
array[int] of int: input_ids,
array[int] of var float: outputs,
array[int] of int: output_ids,
array[int] of float: bias,
array[int] of float: edge_weight,
array[int] of int: edge_parent,
array[int] of int: first_edge,
NEURON_TYPE: neuron_type) =
let { set of int: NODE = index_set(bias) } in
let { set of int: INPUTS = array2set(input_ids) } in
let { set of int: EDGE = index_set(edge_weight) } in
let { array[NODE] of var float: neuron } in
forall(i in index_set(inputs))(neuron[input_ids[i]] = inputs[i]) /\
forall(i in index_set(outputs))(neuron[output_ids[i]] = outputs[i]) /\
forall(i in NODE diff INPUTS) (
let { int: first = first_edge[i];
int: last = if i = max(NODE) then max(index_set(first_edge))
else first_edge[i+1] - 1 endif;
array[int] of var float: ins = [neuron[edge_parent[j]] | j in first..last];
array[int] of float: ws = [ edge_weight[j] | j in first..last ];
float: b = bias[i]; } in
neuron[i] = if neuron_type = NT_RELU then neuron_relu(ins,ws,b)
elseif neuron_type = NT_STEP then neuron_step(ins,ws,b)
elseif neuron_type = NT_LINEAR then neuron_linear(ins,ws,b)
elseif neuron_type = NT_SOFTPLUS then neuron_softplus(ins,ws,b)
else 0.0 endif
);
%-----------------------------------------------------------------------------%
function var float: neuron_relu(array[int] of var float: inputs,
array[int] of float: weights,
float: bias) =
max(0.0, sum(i in index_set(inputs))(weights[i]*inputs[i]) + bias);
function var float: neuron_step(array[int] of var float: inputs,
array[int] of float: weights,
float: bias) =
(sum(i in index_set(inputs))(weights[i]*inputs[i]) + bias >= 0.0);
function var float: neuron_linear(array[int] of var float: inputs,
array[int] of float: weights,
float: bias) =
(sum(i in index_set(inputs))(weights[i]*inputs[i]) + bias);
function var float: neuron_softplus(array[int] of var float: inputs,
array[int] of float: weights,
float: bias) =
(ln(1 + exp(sum(i in index_set(inputs))(weights[i]*inputs[i]) + bias)));